湖南省郴州市2022年高考考前提分数学仿真卷含解析_第1页
湖南省郴州市2022年高考考前提分数学仿真卷含解析_第2页
湖南省郴州市2022年高考考前提分数学仿真卷含解析_第3页
湖南省郴州市2022年高考考前提分数学仿真卷含解析_第4页
湖南省郴州市2022年高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1等差数列中,则数列前6项和为()A18B24C36D722如图,在正四棱柱中,分别为的中点,异面直线与所成角的余弦值为,则( )A直线与直线异面,且B直线与直线共面,且C直线与直线异面,且D直线与直线共面,且3已知双曲线的左右焦点分别为,以线段为直径的圆与双曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是( )A BC D4执行如图所示的程序框图,如果输入,则输出属于( )ABCD53本不同的语文书,2本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率是(

3、 )ABCD6已知函数,若总有恒成立.记的最小值为,则的最大值为( )A1BCD7如图,矩形ABCD中,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:对满足题意的任意的的位置,;对满足题意的任意的的位置,则( ) A命题和命题都成立B命题和命题都不成立C命题成立,命题不成立D命题不成立,命题成立8如图,设为内一点,且,则与的面积之比为ABCD9若函数f(x)x3x2在区间(a,a5)上存在最小值,则实数a的取值范围是A5,0)B(5,0)C3,0)D(3,0)10某中学2019年的高考考生人数是2016年高考考生人数的1.2

4、倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考情况,得到如图柱状图: 则下列结论正确的是( ).A与2016年相比,2019年不上线的人数有所增加B与2016年相比,2019年一本达线人数减少C与2016年相比,2019年二本达线人数增加了0.3倍D2016年与2019年艺体达线人数相同11已知向量,则与共线的单位向量为( )ABC或D或12若向量,则( )A30B31C32D33二、填空题:本题共4小题,每小题5分,共20分。13若曲线(其中常数)在点处的切线的斜率为1,则_.14的三个内角A,B,C所对应的边分别为a,b,c,已知,则_.15下表是关于青年观众

5、的性别与是否喜欢综艺“奔跑吧,兄弟”的调查数据,人数如下表所示:不喜欢喜欢男性青年观众4010女性青年观众3080现要在所有参与调查的人中用分层抽样的方法抽取个人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了8人,则的值为_.16己知双曲线的左、右焦点分别为,直线是双曲线过第一、三象限的渐近线,记直线的倾斜角为,直线,垂足为,若在双曲线上,则双曲线的离心率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在三棱柱中,且.(1)求证:平面平面;(2)设二面角的大小为,求的值.18(12分)如图,在三棱锥中,平面平面,.点,分别为线段,的中点,点是线段的中点

6、.(1)求证:平面.(2)判断与平面的位置关系,并证明.19(12分)已知函数(1)解不等式;(2)若函数,若对于任意的,都存在,使得成立,求实数的取值范围.20(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.21(12分)已知椭圆的右顶点为,为上顶点,点为椭圆上一动点(1)若,求直线与轴的交点坐标;(2)设为椭圆的右焦点,过点与轴垂直的直线为,的中点为,过点作直线的垂线,垂足为,求证:直线与直线的交点在椭圆上22(10分)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的参数方程为(为参数),直线经过点且倾斜角为.(1)求曲线的极坐标方

7、程和直线的参数方程;(2)已知直线与曲线交于,满足为的中点,求.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】由等差数列的性质可得,根据等差数列的前项和公式可得结果.【详解】等差数列中,即,故选C.【点睛】本题主要考查了等差数列的性质以及等差数列的前项和公式的应用,属于基础题.2B【解析】连接,由正四棱柱的特征可知,再由平面的基本性质可知,直线与直线共面.,同理易得,由异面直线所成的角的定义可知,异面直线与所成角为,然后再利用余弦定理求解.【详解】如图所示:连接,由正方体的特征得,所以直线与直线共面.由正四棱柱的特征得

8、,所以异面直线与所成角为.设,则,则,由余弦定理,得.故选:B【点睛】本题主要考查异面直线的定义及所成的角和平面的基本性质,还考查了推理论证和运算求解的能力,属于中档题.3B【解析】先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以,又因为圆与直线的切点为,所以,又,所以,因此,因此有,所以,因此渐近线的方程为.故选B【点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.4B【解析】由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分

9、段函数的值域,当;当综上:.故选:B【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.5D【解析】把5本书编号,然后用列举法列出所有基本事件计数后可求得概率【详解】3本不同的语文书编号为,2本不同的数学书编号为,从中任意取出2本,所有的可能为:共10个,恰好都是数学书的只有一种,所求概率为故选:D.【点睛】本题考查古典概型,解题方法是列举法,用列举法写出所有的基本事件,然后计数计算概率6C【解析】根据总有恒成立可构造函数,求导后分情况讨论的最大值可得最大值最大值,即.根据题意化简可得,求得,再换元求导分析最大值即可.【详解】由题, 总有即恒成立.设

10、,则的最大值小于等于0.又,若则,在上单调递增, 无最大值.若,则当时,在上单调递减, 当时,在上单调递增.故在处取得最大值.故,化简得.故,令,可令,故,当时, ,在递减;当时, ,在递增.故在处取得极大值,为.故的最大值为.故选:C【点睛】本题主要考查了根据导数求解函数的最值问题,需要根据题意分析导数中参数的范围,再分析函数的最值,进而求导构造函数求解的最大值.属于难题.7A【解析】作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】如图所示,过作平面,垂足为,连接,作,连接.由图可知,所以,所以正确.由于,所以与所成角,所以,所以正确.综上所述,都正确.故选:A【

11、点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题8A【解析】作交于点,根据向量比例,利用三角形面积公式,得出与的比例,再由与的比例,可得到结果.【详解】如图,作交于点,则,由题意,且,所以又,所以,即,所以本题答案为A.【点睛】本题考查三角函数与向量的结合,三角形面积公式,属基础题,作出合适的辅助线是本题的关键.9C【解析】求函数导数,分析函数单调性得到函数的简图,得到a满足的不等式组,从而得解.【详解】由题意,f(x)x22xx(x2),故f(x)在(,2),(0,)上是增函数,在(2,0)上是减函数,作出其图象如图所示令x3x2,得x0或x3,则结合图象

12、可知,解得a3,0),故选C.【点睛】本题主要考查了利用函数导数研究函数的单调性,进而研究函数的最值,属于常考题型.10A【解析】设2016年高考总人数为x,则2019年高考人数为,通过简单的计算逐一验证选项A、B、C、D.【详解】设2016年高考总人数为x,则2019年高考人数为,2016年高考不上线人数为,2019年不上线人数为,故A正确;2016年高考一本人数,2019年高考一本人数,故B错误;2019年二本达线人数,2016年二本达线人数,增加了倍,故C错误;2016年艺体达线人数,2019年艺体达线人数,故D错误.故选:A.【点睛】本题考查柱状图的应用,考查学生识图的能力,是一道较为

13、简单的统计类的题目.11D【解析】根据题意得,设与共线的单位向量为,利用向量共线和单位向量模为1,列式求出即可得出答案.【详解】因为,则,所以,设与共线的单位向量为,则,解得 或所以与共线的单位向量为或.故选:D.【点睛】本题考查向量的坐标运算以及共线定理和单位向量的定义.12C【解析】先求出,再与相乘即可求出答案.【详解】因为,所以.故选:C.【点睛】本题考查了平面向量的坐标运算,考查了学生的计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】利用导数的几何意义,由解方程即可.【详解】由已知,所以,解得.故答案为:.【点睛】本题考查导数的几何意义,考查学生的基本

14、运算能力,是一道基础题.14【解析】利用正弦定理边化角可得,从而可得,进而求解.【详解】由,由正弦定理可得,即,整理可得,又因为,所以,因为,所以,故答案为:【点睛】本题主要考查了正弦定理解三角形、两角和的正弦公式,属于基础题.1532【解析】由已知可得抽取的比例,计算出所有被调查的人数,再乘以抽取的比例即为分层抽样的样本容量.【详解】由题可知,抽取的比例为,被调查的总人数为人,则分层抽样的样本容量是人.故答案为:32【点睛】本题考查分层抽样中求样本容量,属于基础题.16【解析】由,则,所以点, 因为,可得,点坐标化简为,代入双曲线的方程求解.【详解】设,则,即,解得,则,所以,即,代入双曲线

15、的方程可得,所以 所以解得.故答案为:【点睛】本题主要考查了直线与双曲线的位置关系,及三角恒等变换,还考查了运算求解的能力和数形结合的思想,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2).【解析】(1)要证明平面平面,只需证明平面即可;(2)取的中点D,连接BD,以B为原点,以,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,分别计算平面的法向量为与平面的法向量为,利用夹角公式计算即可.【详解】(1)在中,所以,即.因为,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由题意知,四边形为菱形,且,则为正三角形,取的中点D,

16、连接BD,则.以B为原点,以,的方向分别为x,y,z轴的正方向,建立空间直角坐标系,则,.设平面的法向量为,且,.由得取.由四边形为菱形,得;又平面,所以;又,所以平面,所以平面的法向量为.所以.故.【点睛】本题考查面面垂直的判定定理以及利用向量法求二面角正弦值的问题,在利用向量法时,关键是点的坐标要写准确,本题是一道中档题.18(1)见解析(2)平面.见解析【解析】(1)要证平面,只需证明,即可求得答案;(2)连接交于点,连接,根据已知条件求证,即可判断与平面的位置关系,进而求得答案.【详解】(1),为边的中点,平面平面,平面平面,平面,平面,在内,为所在边的中点,又,平面.(2)判断可知,

17、平面,证明如下:连接交于点,连接.、分别为边、的中点,.又是的重心,平面,平面,平面.【点睛】本题主要考查了求证线面垂直和线面平行,解题关键是掌握线面垂直判定定理和线面平行判断定理,考查了分析能力和空间想象能力,属于中档题.19(1)(2)【解析】(1)将表示为分段函数的形式,由此求得不等式的解集.(2)利用绝对值三角不等式,求得的取值范围,根据分段函数解析式,求得的取值范围,结合题意列不等式,解不等式求得的取值范围.【详解】(1),由得或或;解得.故所求解集为.(2),即.由(1)知,所以,即.,.【点睛】本小题考查了绝对值不等式,绝对值三角不等式和函数最值问题,考查运算求解能力,推理论证能

18、力,化归与转化思想.20(1);(2)【解析】(1)利用正弦定理,转化为,分析运算即得解;(2)由为的重心,得到,平方可得解c,由面积公式即得解.【详解】(1)由,由正弦定理得C,即,又(2)由于为的重心故,解得或舍的面积为.【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.21(1)(2)见解析【解析】(1)直接求出直线方程,与椭圆方程联立求出点坐标,从而可得直线方程,得其与轴交点坐标;(2)设,则,求出直线和的方程,从而求得两直线的交点坐标,证明此交点在椭圆上,即此点坐标适合椭圆方程代入验证即可注意分和说明【详解】解:本题考查直线与椭圆的位置关系的综合,(1)由题知,则因为,所以,则直线的方程为,联立,可得故则,直线的方程为令,得,故直线与轴的交点坐标为(2)证明:因为,所以设点,则设当时,设,则,此时直线与轴垂直,其直线方程为,直线的方程为,即在方程中,令,得,得交点为,显然在椭圆上同理当时,交点也在椭圆上当时,可设直线的方程为,即直线的方程为,联立方程,消去得,化简并解得将代入中,化简得所以两直线的交点为因为,又因为,所以,则,所以点在椭圆上综上所述,直线与直线的交点在椭圆上【点睛】本题考查直线与椭圆相交问题,解题方法是解析几何的基本方程,求出直线方程,解方程组求出交点坐标,代入曲线方程验证点在曲线本题考查了学生的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论