版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1命题“”的否定是( )ABCD2一小商贩准备用元钱在一批发市场购买甲、乙两种小商品,甲每件进价元,乙每件进价元,甲商品每卖出去件可赚元,乙商品每卖出去件可赚元.该商贩若想获取最大收益
2、,则购买甲、乙两种商品的件数应分别为( )A甲件,乙件B甲件,乙件C甲件,乙件D甲件,乙件3如图是一个算法流程图,则输出的结果是()ABCD4已知不重合的平面 和直线 ,则“ ”的充分不必要条件是( )A内有无数条直线与平行B 且C 且D内的任何直线都与平行5复数在复平面内对应的点为则( )ABCD6我国古代数学巨著九章算术中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布尺,则这位女子织布的天数是( )A2B3C
3、4D17已知,则的大小关系为( )ABCD8已知是边长为1的等边三角形,点,分别是边,的中点,连接并延长到点,使得,则的值为( )ABCD9若各项均为正数的等比数列满足,则公比( )A1B2C3D410如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几何体的体积为( )ABCD11用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是( )A48B60C72D12012已知函数,若时,恒成立,则实数的值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若的展开式中各项
4、系数之和为32,则展开式中x的系数为_14在的展开式中,的系数为_15己知函数,若关于的不等式对任意的恒成立,则实数的取值范围是_.16在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列,其前项和为,若对于任意,且,都有.(1)求证:数列是等差数列(2)若数列满足,且等差数列的公差为,存在正整数,使得,求的最小值.18(12分)曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)过原点且倾
5、斜角为的射线与曲线分别交于两点(异于原点),求的取值范围.19(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.20(12分)已知函数,.()判断函数在区间上零点的个数,并证明;()函数在区间上的极值点从小到大分别为,证明:21(12分)如图,空间几何体中,是边长为2的等边三角形,平面平面,且平面平面,为中点.(1)证明:平面;(2)求二面角平面角的余弦值.22(10分)设函数f(x)=sin(2x-6)+sin(2x+3), xR.(I)求f(x)的最小正周期;(II)若(6,)且f(2)=12,求sin(2+6)的值.参考答案一、选择题:本题共12小题
6、,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据全称命题的否定是特称命题,对命题进行改写即可.【详解】全称命题的否定是特称命题,所以命题“,”的否定是:,故选D【点睛】本题考查全称命题的否定,难度容易.2D【解析】由题意列出约束条件和目标函数,数形结合即可解决.【详解】设购买甲、乙两种商品的件数应分别,利润为元,由题意,画出可行域如图所示,显然当经过时,最大.故选:D.【点睛】本题考查线性目标函数的线性规划问题,解决此类问题要注意判断,是否是整数,是否是非负数,并准确的画出可行域,本题是一道基础题.3A【解析】执行程序框图,逐次计算,根据判断条件终止
7、循环,即可求解,得到答案【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,;第2次循环:满足判断条件,;第3次循环:满足判断条件,;不满足判断条件,输出计算结果,故选A【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题4B【解析】根据充分不必要条件和直线和平面,平面和平面的位置关系,依次判断每个选项得到答案.【详解】A. 内有无数条直线与平行,则相交或,排除;B. 且,故,当,不能得到 且,满足;C. 且,则相交或,排除;D. 内的任何直线都与平行,故,若,则内的任何直
8、线都与平行,充要条件,排除.故选:.【点睛】本题考查了充分不必要条件和直线和平面,平面和平面的位置关系,意在考查学生的综合应用能力.5B【解析】求得复数,结合复数除法运算,求得的值.【详解】易知,则.故选:B【点睛】本小题主要考查复数及其坐标的对应,考查复数的除法运算,属于基础题.6B【解析】将问题转化为等比数列问题,最终变为求解等比数列基本量的问题.【详解】根据实际问题可以转化为等比数列问题,在等比数列中,公比,前项和为,求的值因为,解得,解得故选B【点睛】本题考查等比数列的实际应用,难度较易.熟悉等比数列中基本量的计算,对于解决实际问题很有帮助.7D【解析】由指数函数的图像与性质易得最小,
9、利用作差法,结合对数换底公式及基本不等式的性质即可比较和的大小关系,进而得解.【详解】根据指数函数的图像与性质可知,由对数函数的图像与性质可知,所以最小;而由对数换底公式化简可得由基本不等式可知,代入上式可得所以,综上可知,故选:D.【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.8D【解析】设,作为一个基底,表示向量,然后再用数量积公式求解.【详解】设,所以,所以.故选:D【点睛】本题主要考查平面向量的基本运算,还考查了运算求解的能力,属于基础题.9C【解析】由正项等比数列满足,即,又,即,运算即可得解.【详解】解:因为,所以,又,
10、所以,又,解得.故选:C.【点睛】本题考查了等比数列基本量的求法,属基础题.10D【解析】根据三视图判断出几何体是由一个三棱锥和一个三棱柱构成,利用锥体和柱体的体积公式计算出体积并相加求得几何体的体积.【详解】由三视图可知该几何体的直观图是由一个三棱锥和三棱柱构成,该多面体体积为.故选D.【点睛】本小题主要考查三视图还原为原图,考查柱体和锥体的体积公式,属于基础题.11A【解析】对数字分类讨论,结合数字中有且仅有两个数字相邻,利用分类计数原理,即可得到结论【详解】数字出现在第位时,数字中相邻的数字出现在第位或者位,共有个数字出现在第位时,同理也有个数字出现在第位时,数字中相邻的数字出现在第位或
11、者位,共有个故满足条件的不同的五位数的个数是个故选【点睛】本题主要考查了排列,组合及简单计数问题,解题的关键是对数字分类讨论,属于基础题。12D【解析】通过分析函数与的图象,得到两函数必须有相同的零点,解方程组即得解.【详解】如图所示,函数与的图象,因为时,恒成立,于是两函数必须有相同的零点,所以,解得故选:D【点睛】本题主要考查函数的图象的综合应用和函数的零点问题,考查不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。132025【解析】利用赋值法,结合展开式中各项系数之和列方程,由此求得的值.再利用二项式展开式的通项公式,求得展开式中
12、的系数.【详解】依题意,令,解得,所以,则二项式的展开式的通项为:令,得,所以的系数为.故答案为:2025【点睛】本小题主要考查二项式展开式各项系数之和,考查二项式展开式指定项系数的求法,属于基础题.14【解析】根据二项展开式定理,求出含的系数和含的系数,相乘即可.【详解】的展开式中,所求项为:,的系数为.故答案为:.【点睛】本题考查二项展开式定理的应用,属于基础题.15【解析】首先判断出函数为定义在上的奇函数,且在定义域上单调递增,由此不等式对任意的恒成立,可转化为在上恒成立,进而建立不等式组,解出即可得到答案【详解】解:函数的定义域为,且,函数为奇函数,当时,函数,显然此时函数为增函数,函
13、数为定义在上的增函数,不等式即为,在上恒成立,解得故答案为【点睛】本题考查函数单调性及奇偶性的综合运用,考查不等式的恒成立问题,属于常规题目161【解析】由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值【详解】的二项展开式的中,只有第5项的二项式系数最大,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2).【解析】(1)用数学归纳法证明即可;(2)根据条件可得,然后将用,表示出来,根据是一个整数
14、,可得结果【详解】解:(1)令,则即,成等差数列,下面用数学归纳法证明数列是等差数列,假设成等差数列,其中,公差为,令,即,成等差数列,数列是等差数列;(2),若存在正整数,使得是整数,则,设,是一个整数,从而又当时,有,综上,的最小值为【点睛】本题主要考查由递推关系得通项公式和等差数列的性质,关键是利用数学归纳法证明数列是等差数列,属于难题18(1),;(2).【解析】(1)先将曲线化为普通方程,再由直角坐标系与极坐标系之间的转化关系:,可得极坐标方程和曲线的直角坐标方程;(2)由已知可得出射线的极坐标方程为,联立和的极坐标方程可得点A和点B的极坐标,从而得出,由的范围可求得的取值范围.【详
15、解】(1)曲线的普通方程为,即,其极坐标方程为;曲线的极坐标方程为,即,其直角坐标方程为;(2)射线的极坐标方程为,联立,联立, 的取值范围是【点睛】本题考查圆的参数方程与普通方程互化,圆,抛物线的极坐标方程与普通方程的互化,以及在极坐标下的直线与圆和抛物线的位置关系,属于中档题.19(1);.;(2)【解析】(1)根据题意,知,且,令和即可求出,以及运用递推关系求出的通项公式;(2)通过定义法证明出是首项为8,公比为4的等比数列,利用等比数列的前项和公式,即可求得的前项和.【详解】解:(1)由题可知,且,当时,则,当时,由已知可得,且,的通项公式:.(2)设,则,所以,得是首项为8,公比为4
16、的等比数列,所以数列的前项和为:,即,所以数列的前项和:.【点睛】本题考查通过递推关系求数列的通项公式,以及等比数列的前项和公式,考查计算能力.20()函数在区间上有两个零点.见解析()见解析【解析】()根据题意,利用导函数研究函数的单调性,分类讨论在区间的单调区间和极值,进而研究零点个数问题;()求导,由于在区间上的极值点从小到大分别为,求出,利用导数结合单调性和极值点,即可证明出.【详解】解:(),当时,在区间上单调递减,在区间上无零点;当时,在区间上单调递增,在区间上唯一零点;当时,在区间上单调递减,;在区间上唯一零点;综上可知,函数在区间上有两个零点.(),由()知在无极值点;在有极小
17、值点,即为;在有极大值点,即为,由,即,2,以及的单调性,由函数在单调递增,得,由在单调递减,得,即,故.【点睛】本题考查利用导数研究函数的单调性和极值,通过导数解决函数零点个数问题和证明不等式,考查转化思想和计算能力.21(1)证明见解析(2)【解析】(1)分别取,的中点,连接,要证明平面,只需证明面面即可.(2)以点为原点,以为轴,以为轴,以为轴,建立空间直角坐标系,分别计算面的法向量,面的法向量可取,并判断二面角为锐角,再利用计算即可.【详解】(1)证明:分别取,的中点,连接,.由平面平面,且交于,平面,有平面,由平面平面,且交于,平面,有平面,所以,又平面,平面,所以平面,由,有,又平面,平面,所以平面,由平面,平面,所以平面平面,所以平面(2)以点为原点,以为轴,以为轴,以为轴,建立如图所示空间直角坐标系由面,所以面的法向量可取,点,点,点,设面的法向量,所以,取,二面角的平面角为,则为锐角.所以【点睛】本题考查由面面平行证明线面平行以及向量法求二面角的余弦值,考查学生的运算能力,在做此类题时,一定要准确写出点的坐标.22 (I);(II)-74【解析】(I)化简得到fx=2sin2x+12,得到周期.(II)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024全新绿色环保产业项目合作协议3篇
- 洛阳职业技术学院《人文地理学》2023-2024学年第一学期期末试卷
- 2024全新环保产业劳动合同执行细则及环保责任承诺3篇
- 2025酒水购销合同范文
- 夏令营地活动赞助合同
- 企业新品发布会接待流程
- 2024年度购物中心健身中心特许经营合同3篇
- 集市绿色能源集贸市场管理办法
- 建筑印刷施工人工费合同
- 厨房装饰装修协议
- 小学数学大单元教案5篇
- 《金属塑性加工原理》考试总复习题
- 中国心力衰竭诊断和治疗指南2024解读
- 国开《农村环境保护形成性考核册》形考1-3答案
- 工程实例:三峡工程施工导流讲解
- 企业如何应对自然灾害和突发事件风险
- 皮带机安装方案
- 学生会公寓部工作总结
- 教师如何处理学生的消极情绪
- 设备安全调试维修作业安全培训
- 苏轼的坎坷一生(被贬路线)课件
评论
0/150
提交评论