




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知集合A=x|1x1,则AB=A(1,1)B(1,2)C(1,+)D(1,+)2已知集合U1,2,3,4,5,6,A2,4,B3,4,则( )A3,5,6B1,5,6C2,3,4D1,2,3,5,63网格纸上小正方形边长为1单位长度,粗线画
2、出的是某几何体的三视图,则此几何体的体积为( )A1BC3D44已知复数和复数,则为ABCD5已知集合,则的真子集个数为( )A1个B2个C3个D4个6中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( )A12种B24种C36种D48种7已知集合,,则ABCD8 “幻方”最早记载于我国公元前50
3、0年的春秋时期大戴礼中“阶幻方”是由前个正整数组成的个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示)则“5阶幻方”的幻和为( )A75B65C55D459已知定义在上的函数满足,且当时,则方程的最小实根的值为( )ABCD101777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地
4、后与直线相交的概率约为( )ABCD11若函数在时取得极值,则( )ABCD12 “哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在三棱锥中,已知,且平面平面,则三棱锥外接球的表面积为_.14等腰直角三角形内有一点P,则面积为_.15已知,为双曲线的左、右焦点,双曲线的渐近线上
5、存在点满足,则的最大值为_16某次足球比赛中,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率0.40.30.8获胜概率0.60.70.5获胜概率0.70.30.3获胜概率0.20.50.7则队获得冠军的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)中国古代数学经典数书九章中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为“阳马”,将四个面都为直角三角形的四面体称之为“鳖臑”.在如图所示的阳马中,底面ABCD是矩形.平面,以的中点O为球心,AC为直径的球面交PD于M
6、(异于点D),交PC于N(异于点C).(1)证明:平面,并判断四面体MCDA是否是鳖臑,若是,写出它每个面的直角(只需写出结论);若不是,请说明理由;(2)求直线与平面所成角的正弦值.18(12分)已知抛物线的焦点为,点,点为抛物线上的动点 (1)若的最小值为,求实数的值; (2)设线段的中点为,其中为坐标原点,若,求的面积19(12分)已知关于的不等式有解.(1)求实数的最大值;(2)若,均为正实数,且满足.证明:.20(12分)在直角坐标系中,曲线的参数方程为(为参数,),点.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程,并指出其形状;(2)
7、曲线与曲线交于,两点,若,求的值.21(12分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求曲线的普通方程和直线的直角坐标方程;(2)设点,若直线与曲线相交于、两点,求的值22(10分)已知动圆E与圆外切,并与直线相切,记动圆圆心E的轨迹为曲线C.(1)求曲线C的方程;(2)过点的直线l交曲线C于A,B两点,若曲线C上存在点P使得,求直线l的斜率k的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据并集的求法直接求出结果.【详解】
8、, ,故选C.【点睛】考查并集的求法,属于基础题.2B【解析】按补集、交集定义,即可求解.【详解】1,3,5,6,1,2,5,6,所以1,5,6.故选:B.【点睛】本题考查集合间的运算,属于基础题.3A【解析】采用数形结合,根据三视图可知该几何体为三棱锥,然后根据锥体体积公式,可得结果.【详解】根据三视图可知:该几何体为三棱锥如图该几何体为三棱锥,长度如上图所以所以所以故选:A【点睛】本题考查根据三视图求直观图的体积,熟悉常见图形的三视图:比如圆柱,圆锥,球,三棱锥等;对本题可以利用长方体,根据三视图删掉没有的点与线,属中档题.4C【解析】利用复数的三角形式的乘法运算法则即可得出【详解】z1z
9、2(cos23+isin23)(cos37+isin37)cos60+isin60故答案为C【点睛】熟练掌握复数的三角形式的乘法运算法则是解题的关键,复数问题高考必考,常见考点有:点坐标和复数的对应关系,点的象限和复数的对应关系,复数的加减乘除运算,复数的模长的计算.5C【解析】求出的元素,再确定其真子集个数【详解】由,解得或,中有两个元素,因此它的真子集有3个故选:C.【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集6C【解析】根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩
10、余的3门全排列,即可求解.【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.【点睛】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.7D【解析】因为,所以,故选D8B【解析】计算的和,然后除以,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为,故选B.【点睛】本小题主要考查合情
11、推理与演绎推理,考查等差数列前项和公式,属于基础题.9C【解析】先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【详解】当时,所以,故当时,所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,则,即,此时令,得,所以最小实根为411.故选:C.【点睛】本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.10D【解析】根据统计数据,求出频率,用以估计概率.【详解】.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.11D【解
12、析】对函数求导,根据函数在时取得极值,得到,即可求出结果.【详解】因为,所以,又函数在时取得极值,所以,解得.故选D【点睛】本题主要考查导数的应用,根据函数的极值求参数的问题,属于常考题型.12A【解析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有,利用古典概型求解即可.【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1),而加数全为质数的有(3,3),根据古典概型知,所求概率为.故选:A.【点睛】本题主要考查了古典概型,基本事件,属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】取的中点,设等边三角
13、形的中心为,连接.根据等边三角形的性质可求得, 由等腰直角三角形的性质,得,根据面面垂直的性质得平面,由勾股定理求得,可得为三棱锥外接球的球心,根据球体的表面积公式可求得此外接球的表面积.【详解】在等边三角形中,取的中点,设等边三角形的中心为,连接.由,得,由已知可得是以为斜边的等腰直角三角形,,又由已知可得平面平面,平面,所以,为三棱锥外接球的球心,外接球半径,三棱锥外接球的表面积为.故答案为:【点睛】本题考查三棱锥的外接球的表面积,关键在于根据三棱锥的面的关系、棱的关系和长度求得外接球的球心的位置,球的半径,属于中档题.14【解析】利用余弦定理计算,然后根据平方关系以及三角形面积公式,可得
14、结果.【详解】设由题可知:由,所以化简可得:则或,即或由,所以所以故答案为:【点睛】本题主要考查余弦定理解三角形,仔细观察,细心计算,属基础题.15【解析】设,由可得,整理得,即点在以为圆心,为半径的圆上又点到双曲线的渐近线的距离为,所以当双曲线的渐近线与圆相切时,取得最大值,此时,解得160.18【解析】根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【点睛】
15、本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析,是,;(2)【解析】(1)根据是球的直径,则,又平面, 得到,再由线面垂直的判定定理得到平面,进而得到,再利用线面垂直的判定定理得到平面.(2)以A为原点,所在直线为x,y,z轴建立直角坐标系,设,由,解得,得到,从而得到,然后求得平面的一个法向量,代入公式求解.【详解】(1)因为是球的直径,则,又平面, ,.平面,平面.根据证明可知,四面体是鳖臑. 它的每个面的直角分别是,. (2)如图,以A为原点,所在直线为x,y,z轴建立直角坐标系,则,. M
16、为中点,从而.所以,设,则. 由,得.由得,即.所以. 设平面的一个法向量为. 由.取,得到.记与平面所成角为,则.所以直线与平面所成的角的正弦值为.【点睛】本题主要考查线面垂直的判定定理和线面角的向量求法,还考查了转化化归的思想和运算求解的能力,属于中档题.18(1)的值为或.(2)【解析】(1)分类讨论,当时,线段与抛物线没有公共点,设点在抛物线准线上的射影为,当三点共线时,能取得最小值,利用抛物线的焦半径公式即可求解;当时,线段与抛物线有公共点,利用两点间的距离公式即可求解. (2)由题意可得轴且设,则,代入抛物线方程求出,再利用三角形的面积公式即可求解.【详解】由题,若线段与抛物线没有
17、公共点,即时,设点在抛物线准线上的射影为,则三点共线时,的最小值为,此时若线段与抛物线有公共点,即时,则三点共线时,的最小值为:,此时综上,实数的值为或.因为,所以轴且设,则,代入抛物线的方程解得于是,所以【点睛】本题考查了抛物线的焦半径公式、直线与抛物线的位置关系中的面积问题,属于中档题.19(1);(2)见解析【解析】(1)由题意,只需找到的最大值即可;(2),构造并利用基本不等式可得,即.【详解】(1),的最大值为4.关于的不等式有解等价于,()当时,上述不等式转化为,解得,()当时,上述不等式转化为,解得,综上所述,实数的取值范围为,则实数的最大值为3,即.(2)证明:根据(1)求解知
18、,所以,又,当且仅当时,等号成立,即,所以,.【点睛】本题考查绝对值不等式中的能成立问题以及综合法证明不等式问题,是一道中档题.20(1),以为圆心,为半径的圆;(2)【解析】(1)根据极坐标与直角坐标的互化公式,直接得到的直角坐标方程并判断形状;(2)联立直线参数方程与的直角坐标方程,根据直线参数方程中的几何意义结合求解出的值.【详解】解:(1)由,得,所以,即,.所以曲线是以为圆心,为半径的圆.(2)将代入,整理得.设点,所对应的参数分别为,则,.,解得,则.【点睛】本题考查极坐标与直角坐标的互化以及根据直线参数方程中的几何意义求值,难度一般.(1)极坐标与直角坐标的互化公式:;(2)若要使用直线参数方程中的几何意义,要注意将直线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 哈工大张秉刚:激光焊接技术课件
- 检测新质生产力
- 《企业员工公文写作》课件
- 临沂职业学院《高级英语III》2023-2024学年第二学期期末试卷
- 吉林市重点中学2025年高三下第三次阶段过关语文试题试卷含解析
- 山西警察学院《油画人物写生术科技能教学》2023-2024学年第二学期期末试卷
- 吉林省白山市长白县重点达标名校2024-2025学年初三下学期第三次质量考评数学试题含解析
- 柯坪县2025年数学五下期末经典模拟试题含答案
- 金陵科技学院《口腔颌面外科学1》2023-2024学年第二学期期末试卷
- 内江职业技术学院《工程计量与计价软件》2023-2024学年第二学期期末试卷
- 浓缩机的选择与计算
- 沪教版六年级下册单词表
- 团代会PPT模板
- 地基基础软弱下卧层验算计算表格
- 最新投标书密封条
- SAPFI清账接口和部分清账接口例子
- TWI之工作改善JM精讲
- 聚酯装置流程与聚酯生产概述
- 乡镇综治中心管理考核办法(试行)
- BIM培训计划Revit 培训计划
- 中考英语常用特殊疑问句总结
评论
0/150
提交评论