河南省郑州市2021-2022学年高考冲刺模拟数学试题含解析_第1页
河南省郑州市2021-2022学年高考冲刺模拟数学试题含解析_第2页
河南省郑州市2021-2022学年高考冲刺模拟数学试题含解析_第3页
河南省郑州市2021-2022学年高考冲刺模拟数学试题含解析_第4页
河南省郑州市2021-2022学年高考冲刺模拟数学试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若函数在时取得极值,则( )ABCD2展开式中x2的系数为( )A1280B4864C4864D12803若函数,在区间上任取三个实数,均存在以,为边长的三角形,则实数的取

2、值范围是( )ABCD4若时,则的取值范围为( )ABCD5已知函数,若曲线上始终存在两点,使得,且的中点在轴上,则正实数的取值范围为( )ABCD6抛物线C:y2=2px的焦点F是双曲线C2:x2m-y21-m=10m,【解析】根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系.【详解】,故.,.要比较的大小,只需比较与,两者作差并化简得,由于为互不相等的正实数,故,也即,也即.故答案为:【点睛】本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题.14【解析】由,成等差数列,代入可得的值.【详解】解:由等差数列的性质可得:,成等差数

3、列,可得:,代入,可得:,故答案为:.【点睛】本题主要考查等差数列前n项和的性质,相对不难.155 【解析】 ,即的最大值为16【解析】由虚数单位的性质结合复数相等的条件列式求得,的值,则答案可求【详解】解:由,所以,得,故答案为:【点睛】本题考查复数代数形式的乘除运算,考查虚数单位的性质,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)()(2),(3)【解析】(1)依题意先求出,然后根据 ,求出的通项公式为,再检验的情况即可;(2)由递推公式,得, 结合数列性质可得数列相邻项之间的关系,从而可求出结果;(3)通过(1)、(2)可得,所以,记,利用函数单调性

4、可求的范围,从而列不等式可解.【详解】解:(1)因为数列满足();当时,检验当时, 成立.所以,数列的通项公式为()(2)由,得, 所以, 由,得,即, 所以, 由,得,因为,所以,上式同除以,得,即,所以,数列时首项为1,公差为1的等差数列,故,(3)因为所以,记,当时,所以,当时,数列为单调递减,当时,从而,当时,因此,所以,对任意的,综上,【点睛】本题考在数列通项公式的求法、等差数列的定义及通项公式、数列的单调性,考查考生的逻辑思维能力、运算求解能力以及化归与转化思想、分类讨论思想.18(1)(2)22.5(3)见解析,【解析】(1)根据频数计算频率,得出概率;(2)根据优惠标准计算平均

5、利润;(3)求出各种情况对应的的值和概率,得出分布列,从而计算出数学期望【详解】解:(1)估计1位会员至少消费两次的概率;(2)第1次消费利润;第2次消费利润;第3次消费利润;第4次消费利润;这4次消费获得的平均利润:(3)1次消费利润是27,概率是;2次消费利润是,概率是;3次消费利润是,概率是;4次消费利润是,概率是;由题意:故分布列为: 0 期望为: 【点睛】本题考查概率、平均利润、离散型随机变量的分布列和数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于中档题19(1)不需调整(2)列联表见解析;有的把握判断学生“选择化学科目”与“选择物理科目”有

6、关(3)详见解析【解析】(1)可估计高一年级选修相应科目的人数分别为120,2,推理得对应开设选修班的数目分别为15,1推理知生物科目需要减少4名教师,化学科目不需要调整(2)根据列联表计算观测值,根据临界值表可得结论(3)经统计,样本中选修了历史科目且在政治和地理2门中至少选修了一门的人数为12,频率为用频率估计概率,则,根据二项分布概率公式可得分布列和数学期望【详解】(1)经统计可知,样本40人中,选修化学、生物的人数分别为24,11,则可估计高一年级选修相应科目的人数分别为120,2根据每个选修班最多编排50人,且尽量满额编班,得对应开设选修班的数目分别为15,1现有化学、生物科目教师每

7、科各8人,根据每位教师执教2个选修班,当且仅当一门科目的选课班级总数为奇数时,允许这门科目的一位教师执教一个班的条件,知生物科目需要减少4名教师,化学科目不需要调整(2)根据表格中的数据进行统计后,制作列联表如下:选物理不选物理 合计选化学 19524 不选化学 61016合计2515 40则,有的把握判断学生”选择化学科目”与“选择物理科目”有关(3)经统计,样本中选修了历史科目且在政治和地理2门中至少选修了一门的人数为12,频率为用频率估计概率,则,分布列如下: 012 3 0.343 0.4410.1890.021数学期望为【点睛】本题主要考查了离散型随机变量的期望与方差,考查独立性检验

8、,意在考查学生对这些知识的理解掌握水平和分析推理能力20(1)见解析(2)【解析】(1)利用面面垂直的性质定理证得平面,由此证得,根据圆的几何性质证得,由此证得平面.(2)判断出三棱锥的体积最大时点的位置.建立空间直角坐标系,通过平面和平面的法向量,计算出二面角的余弦值.【详解】(1)证明:因为平面平面是正方形,所以平面.因为平面,所以.因为点在以为直径的半圆弧上,所以.又,所以平面.(2)解:显然,当点位于的中点时,的面积最大,三棱锥的体积也最大.不妨设,记中点为,以为原点,分别以的方向为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则令,得.设平面的法向量为,则令

9、,得,所以.由图可知,二面角为锐角,故二面角的余弦值为.【点睛】本小题主要考查线面垂直的证明,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21;.【解析】连接,由三角形相似得,进而得出,写出椭圆的标准方程;由得,因为直线与椭圆相切于点,解得,因为点在第二象限,所以,所以,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,求出面积的取值范围.【详解】解:连接,由可得,椭圆的标准方程;由得,因为直线与椭圆相切于点,所以,即,解得,即点的坐标为,因为点在第二象限,所以,所以,所以点的坐标为,设直线与垂直交于点,则是点到直线的距离,设直线的方程为,则,当且仅当,即时,有最大

10、值,所以,即面积的取值范围为.【点睛】本题考查直线和椭圆位置关系的应用,利用基本不等式,属于难题.22(1) (2)为减函数,为增函数. (3)证明见解析【解析】(1)求出导函数,求出切线方程,令得切线的纵截距,可得(必须利用函数的单调性求解);(2)求函数的导数,由导数的正负确定单调性;(3)不等式变形为,由递减,得(),即,即,依次放缩,不等式,递增得(),,先证,然后同样放缩得出结论【详解】解:(1)对求导,得.因此.又因为,所以曲线在点处的切线方程为,即.由题意,.显然,适合上式.令,求导得,因此为增函数:故是唯一解.(2)由(1)可知,因为,所以为减函数.因为,所以为增函数.(3)证明:由,易得.由(2)可知,在上为减函数.因此,当时,即.令,得,即.因此,当时,.所以成立.下面证明:.由(2)可知,在上为增函数.因此,当时,即.因此,即.令,得,即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论