甘肃省武威市重点2022年高三一诊考试数学试卷含解析_第1页
甘肃省武威市重点2022年高三一诊考试数学试卷含解析_第2页
甘肃省武威市重点2022年高三一诊考试数学试卷含解析_第3页
甘肃省武威市重点2022年高三一诊考试数学试卷含解析_第4页
甘肃省武威市重点2022年高三一诊考试数学试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1 下列与的终边相同的角的表达式中正确的是()A2k45(kZ)Bk360(kZ)Ck360315(kZ)Dk (kZ)2如图,四边形为平行四边形,为中点,为的三等分点(靠近)若,则的值

2、为( )ABCD3已知的部分图象如图所示,则的表达式是( )ABCD4如果实数满足条件,那么的最大值为( )ABCD5某校在高一年级进行了数学竞赛(总分100分),下表为高一一班40名同学的数学竞赛成绩:555759616864625980889895607388748677799497100999789818060796082959093908580779968如图的算法框图中输入的为上表中的学生的数学竞赛成绩,运行相应的程序,输出,的值,则( )A6B8C10D126已知函数,若,则等于( )A-3B-1C3D07ABCD8如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图

3、,则该几何体的体积是( )ABCD89若复数满足,则对应的点位于复平面的( )A第一象限B第二象限C第三象限D第四象限10已知等比数列的前项和为,若,且公比为2,则与的关系正确的是( )ABCD11已知展开式的二项式系数和与展开式中常数项相等,则项系数为( )A10B32C40D8012已知复数,则的虚部是( )ABCD1二、填空题:本题共4小题,每小题5分,共20分。13如图是一个算法的伪代码,运行后输出的值为_14如图,已知,为的中点,为以为直径的圆上一动点,则的最小值是_15在平面直角坐标系中,若双曲线(,)的离心率为,则该双曲线的渐近线方程为_.16已知为偶函数,当时,则_三、解答题:

4、共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数(为常数)()当时,求的单调区间;()若为增函数,求实数的取值范围.18(12分)已知函数.(1)当时,求不等式的解集;(2)若的解集包含,求的取值范围.19(12分)为了整顿道路交通秩序,某地考虑将对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通行人中随机选取了200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如表数据:处罚金额(单位:元)5101520会闯红灯的人数50402010若用表中数据所得频率代替概率.(1)当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?(2)将选取的200人中会闯

5、红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其他市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?20(12分)已知函数(1)若在处取得极值,求的值;(2)求在区间上的最小值;(3)在(1)的条件下,若,求证:当时,恒有成立21(12分)设为实数,已知函数,(1)当时,求函数的单调区间:(2)设为实数,若不等式对任意的及任意的恒成立,求的取值范围;(3)若函数(,)有两个相异的零点,求的取值范围22(10分)的内角的对边分别为,且(1)求角的大小(2)若,的面积,求的周长参考答案一、选择题:本题共12小题,每小题5分,共60分。在

6、每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】利用终边相同的角的公式判断即得正确答案.【详解】与的终边相同的角可以写成2k (kZ),但是角度制与弧度制不能混用,所以只有答案C正确.故答案为C【点睛】(1)本题主要考查终边相同的角的公式,意在考查学生对该知识的掌握水平和分析推理能力.(2) 与终边相同的角=+ 其中.2D【解析】使用不同方法用表示出,结合平面向量的基本定理列出方程解出【详解】解:,又解得,所以故选:D【点睛】本题考查了平面向量的基本定理及其意义,属于基础题3D【解析】由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合

7、的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.4B【解析】解:当直线过点时,最大,故选B5D【解析】根据程序框图判断出的意义,由此求得的值,进而求得的值.【详解】由题意可得的取值为成绩大于等于90的人数,的取值为成绩大于等于60且小于90的人数,故,所以.故选:D【点睛】本小题考查利用程序框图计算统计量等基础知识;考查运算求解能力,逻辑推理能力和数学应用意识.6D【解析】分析:因为题设中给出了的值,要求的值,故应考虑两者之

8、间满足的关系.详解:由题设有,故有,所以,从而,故选D.点睛:本题考查函数的表示方法,解题时注意根据问题的条件和求解的结论之间的关系去寻找函数的解析式要满足的关系. 7A【解析】直接利用复数代数形式的乘除运算化简得答案.【详解】本题正确选项:【点睛】本题考查复数代数形式的乘除运算,是基础的计算题8A【解析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,故选:A【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键9D【解析】利用复数模的计算、复数的除法化简复数,再根据

9、复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.10C【解析】在等比数列中,由即可表示之间的关系.【详解】由题可知,等比数列中,且公比为2,故故选:C【点睛】本题考查等比数列求和公式的应用,属于基础题.11D【解析】根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D【点睛】本题考查二项式定理通项公式,熟悉公式,细心计算,属基础题.12C【解析】化简复数,

10、分子分母同时乘以,进而求得复数,再求出,由此得到虚部.【详解】,所以的虚部为.故选:C【点睛】本小题主要考查复数的乘法、除法运算,考查共轭复数的虚部,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。1313【解析】根据题意得到:a=0,b=1,i=2A=1,b=2,i=4,A=3,b=5,i=6,A=8,b=13,i=8不满足条件,故得到此时输出的b值为13.故答案为13.14【解析】建立合适的直角坐标系,求出相关点的坐标,进而可得的坐标表示,利用平面向量数量积的坐标表示求出的表达式,求出其最小值即可.【详解】建立直角坐标系如图所示:则点,设点,所以,由平面向量数量积的坐标表示可得

11、,其中, 因为,所以的最小值为.故答案为:【点睛】本题考查平面向量数量积的坐标表示和利用辅助角公式求最值;考查数形结合思想和转化与化归能力、运算求解能力;建立直角坐标系,把表示为关于角的三角函数,利用辅助角公式求最值是求解本题的关键;属于中档题.15【解析】利用,解出,即可求出双曲线的渐近线方程.【详解】,且,该双曲线的渐近线方程为:.故答案为:.【点睛】本题考查了双曲线离心率与渐近线方程,考查了双曲线基本量的关系,考查了运算能力,属于基础题.16【解析】由偶函数的性质直接求解即可【详解】.故答案为【点睛】本题考查函数的奇偶性,对数函数的运算,考查运算求解能力三、解答题:共70分。解答应写出文

12、字说明、证明过程或演算步骤。17()单调递增区间为,;单调递减区间为;().【解析】()对函数进行求导,利用导数判断函数的单调性即可;()对函数进行求导,由题意知,为增函数等价于在区间恒成立,利用分离参数法和基本不等式求最值即可求出实数的取值范围.【详解】()由题意知,函数的定义域为,当时,令,得,或,所以,随的变化情况如下表:递增递减递增的单调递增区间为,单调递减区间为.()由题意得在区间恒成立,即在区间恒成立.,当且仅当,即时等号成立.所以,所以的取值范围是.【点睛】本题考查利用导数求函数的单调区间、利用分离参数法和基本不等式求最值求参数的取值范围;考查运算求解能力和逻辑推理能力;利用导数

13、把函数单调性问题转化为不等式恒成立问题是求解本题的关键;属于中档题、常考题型.18(1);(2).【解析】(1)对范围分类整理得:,分类解不等式即可(2)利用已知转化为“当时,”恒成立,利用绝对值不等式的性质可得:,问题得解【详解】当时,当时,由得,解得;当时,无解;当时,由得,解得,所以的解集为(2)的解集包含等价于在上恒成立,当时,等价于恒成立,而,故满足条件的的取值范围是【点睛】本题主要考查了含绝对值不等式的解法,还考查了转化能力及绝对值不等式的性质,考查计算能力,属于中档题19(1)降低(2)【解析】(1)计算出罚金定为10元时行人闯红灯的概率,和不进行处罚时行人闯红灯的概率,求解即可

14、;(2)闯红灯的市民有80人,其中类市民和类市民各有40人,根据分层抽样法抽出4人依次排序,计算所求的概率值.【详解】解:(1)当罚金定为10元时,行人闯红灯的概率为;不进行处罚,行人闯红灯的概率为;所以当罚金定为10元时,行人闯红灯的概率会比不进行处罚降低;(2)由题可知,闯红灯的市民有80人,类市民和类市民各有40人故分别从类市民和类市民各抽出两人,4人依次排序记类市民中抽取的两人对应的编号为,类市民中抽取的两人编号为则4人依次排序分别为,共有种前两位均为类市民排序为,有种,所以前两位均为类市民的概率是.【点睛】本题主要考查了计算古典概型的概率,属于中档题.20(1)2;(2);(3)证明

15、见解析【解析】(1)先求出函数的定义域和导数,由已知函数在处取得极值,得到,即可求解的值;(2)由(1)得,定义域为,分,和三种情况讨论,分别求得函数的最小值,即可得到结论;(3)由,得到,把,只需证,构造新函数,利用导数求得函数的单调性与最值,即可求解.【详解】(1)由,定义域为,则,因为函数在处取得极值,所以,即,解得,经检验,满足题意,所以.(2)由(1)得,定义域为,当时,有,在区间上单调递增,最小值为,当时,由得,且,当时,单调递减;当时,单调递增;所以在区间上单调递增,最小值为,当时,则,当时,单调递减;当时,单调递增;所以在处取得最小值,综上可得:当时,在区间上的最小值为1,当时

16、,在区间上的最小值为.(3)由得,当时,则,欲证,只需证,即证,即,设,则,当时,在区间上单调递增,当时,即,故, 即当时,恒有成立.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题21(1)函数单调减区间为;单调增区间为(2)(3)【解析】(1)据导数和函数单调性的关系即可求出;(2)分离参数,可得对任意的及任意的恒成立,构造函数,利用导数求出函

17、数的最值即可求出的范围;(3)先求导,再分类讨论,根据导数和函数单调性以及最值得关系即可求出的范围【详解】解:(1)当时,因为,当时,;当时,所以函数单调减区间为;单调增区间为(2)由,得,由于,所以对任意的及任意的恒成立,由于,所以,所以对任意的恒成立,设,则,所以函数在上单调递减,在上单调递增,所以,所以(3)由,得,其中若时,则,所以函数在上单调递增,所以函数至多有一个零点,不合题意;若时,令,得由第(2)小题,知:当时,所以,所以,所以当时,函数的值域为所以,存在,使得,即, 且当时,所以函数在上单调递增,在上单调递减因为函数有两个零点,所以设,则,所以函数在单调递增,由于,所以当时,所以,式中的,又由式,得由第(1)小题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论