福建省厦门市集美高中2021-2022学年高三(最后冲刺)数学试卷含解析_第1页
福建省厦门市集美高中2021-2022学年高三(最后冲刺)数学试卷含解析_第2页
福建省厦门市集美高中2021-2022学年高三(最后冲刺)数学试卷含解析_第3页
福建省厦门市集美高中2021-2022学年高三(最后冲刺)数学试卷含解析_第4页
福建省厦门市集美高中2021-2022学年高三(最后冲刺)数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知角的终边经过点,则ABCD2已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,且,

2、则该双曲线的渐近线方程为( )ABCD3已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点( )A先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变B先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变C先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变D先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变4如图是甲、乙两位同学在六次数学小测试(满分100分)中得分情况的茎叶图,则下列说法错误的是( )A甲得分的平均数比乙大B甲得分的极差比乙大C甲得分的方差比乙小D甲得分的中位数和乙相等5已知

3、函数,的图象与直线的两个相邻交点的距离等于,则的一条对称轴是( )ABCD6将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为( )A6B8C10D127关于的不等式的解集是,则关于的不等式的解集是( )ABCD8已知是等差数列的前项和,若,设,则数列的前项和取最大值时的值为( )A2020B20l9C2018D20179设,则“”是“”的A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必要条件10已知等边ABC内接于圆:x2+ y2=1

4、,且P是圆上一点,则的最大值是( )AB1CD211中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( )A12种B24种C36种D48种12已知底面是等腰直角三角形的三棱锥P-ABC的三视图如图所示,俯视图中的两个小三角形全等,则( )APA,PB,PC两两垂直B三棱锥P-ABC的体积为CD三棱

5、锥P-ABC的侧面积为二、填空题:本题共4小题,每小题5分,共20分。13一个算法的伪代码如图所示,执行此算法,最后输出的T的值为_.14已知是抛物线的焦点,是上一点,的延长线交轴于点若为的中点,则_15已知平面向量,的夹角为,且,则=_16已知,则_。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某

6、运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?18(12分)在中,(1)求的值;(2)点为边上的动点(不与点重合),设,求的取值范围19(12分)如图,在四棱锥中,底面,为的中点,是上的点.(1)若平面,证明:平面.(2)求二面角的余弦值.20(12分)已知函数(,为自然对数的底数),.(1)若有两个零点,求实数的取

7、值范围;(2)当时,对任意的恒成立,求实数的取值范围.21(12分)已知数列满足:对一切成立.(1)求数列的通项公式;(2)求数列的前项和.22(10分)在数列中,(1)求数列的通项公式;(2)若存在,使得成立,求实数的最小值参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】因为角的终边经过点,所以,则,即.故选D2D【解析】根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点

8、睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.3D【解析】由函数的图象关于直线对称,得,进而得再利用图像变换求解即可【详解】由函数的图象关于直线对称,得,即,解得,所以,故只需将函数的图象上的所有点“先向左平移个单位长度,得再将横坐标缩短为原来的,纵坐标保持不变,得”即可.故选:D【点睛】本题考查三角函数的图象与性质,考查图像变换,考查运算求解能力,是中档题4B【解析】由平均数、方差公式和极差、中位数概念,可得所求结论【详解】对于甲,;对于乙,故正确;甲的极差为,乙的极差为,故错误;对于甲,方差.5,对于乙,方差,故正确;甲得分的

9、中位数为,乙得分的中位数为,故正确故选:【点睛】本题考查茎叶图的应用,考查平均数和方差等概念,培养计算能力,意在考查学生对这些知识的理解掌握水平,属于基础题5D【解析】由题,得,由的图象与直线的两个相邻交点的距离等于,可得最小正周期,从而求得,得到函数的解析式,又因为当时,由此即可得到本题答案.【详解】由题,得,因为的图象与直线的两个相邻交点的距离等于,所以函数的最小正周期,则,所以,当时,所以是函数的一条对称轴,故选:D【点睛】本题主要考查利用和差公式恒等变形,以及考查三角函数的周期性和对称性.6D【解析】推导出,且,设中点为,则平面,由此能表示出该容器的体积,从而求出参数的值【详解】解:如

10、图(4),为该四棱锥的正视图,由图(3)可知,且,由为等腰直角三角形可知,设中点为,则平面,解得.故选:D【点睛】本题考查三视图和锥体的体积计算公式的应用,属于中档题.7A【解析】由的解集,可知及,进而可求出方程的解,从而可求出的解集.【详解】由的解集为,可知且,令,解得,因为,所以的解集为,故选:A.【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.8B【解析】根据题意计算,计算,得到答案.【详解】是等差数列的前项和,若,故,故,当时,当时,故前项和最大.故选:.【点睛】本题考查了数列和的最值问题,意在考查学生对于数列公式方法的综合应用.9A

11、【解析】根据对数的运算分别从充分性和必要性去证明即可.【详解】若, ,则,可得;若,可得,无法得到,所以“”是“”的充分而不必要条件.所以本题答案为A.【点睛】本题考查充要条件的定义,判断充要条件的方法是: 若为真命题且为假命题,则命题p是命题q的充分不必要条件; 若为假命题且为真命题,则命题p是命题q的必要不充分条件; 若为真命题且为真命题,则命题p是命题q的充要条件; 若为假命题且为假命题,则命题p是命题q的即不充分也不必要条件. 判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.10D【解析】如图所示建立直角坐标系,设,则,计算得到答案.【

12、详解】如图所示建立直角坐标系,则,设,则.当,即时等号成立.故选:.【点睛】本题考查了向量的计算,建立直角坐标系利用坐标计算是解题的关键.11C【解析】根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的3门全排列,即可求解.【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.【点睛】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,

13、先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.12C【解析】根据三视图,可得三棱锥P-ABC的直观图,然后再计算可得.【详解】解:根据三视图,可得三棱锥P-ABC的直观图如图所示,其中D为AB的中点,底面ABC.所以三棱锥P-ABC的体积为,、不可能垂直,即不可能两两垂直,.三棱锥P-ABC的侧面积为.故正确的为C.故选:C.【点睛】本题考查三视图还原直观图,以及三棱锥的表面积、体积的计算问题,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由程序中的变量、各语句的作用,结合流程图所给的顺序,模拟程序的运行,即可得到答案.【详解】根

14、据题中的程序框图可得:,执行循环体,不满足条件,执行循环体,此时,满足条件,退出循环,输出的值为.故答案为:【点睛】本题主要考查了程序和算法,依次写出每次循环得到的,的值是解题的关键,属于基本知识的考查.14【解析】由题意可得,又由于为的中点,且点在轴上,所以可得点的横坐标,代入抛物线方程中可求点的纵坐标,从而可求出点的坐标,再利用两点间的距离公式可求得结果.【详解】解:因为是抛物线的焦点,所以,设点的坐标为,因为为的中点,而点的横坐标为0,所以,所以,解得,所以点的坐标为所以,故答案为:【点睛】此题考查抛物线的性质,中点坐标公式,属于基础题.151【解析】根据平面向量模的定义先由坐标求得,再

15、根据平面向量数量积定义求得;将化简并代入即可求得.【详解】,则,平面向量,的夹角为,则由平面向量数量积定义可得,根据平面向量模的求法可知,代入可得,解得,故答案为:1.【点睛】本题考查了平面向量模的求法及简单应用,平面向量数量积的定义及运算,属于基础题.16【解析】由已知求,再利用和角正切公式,求得,【详解】因为所以cos因此.【点睛】本题考查了同角三角函数基本关系式与和角的正切公式。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函

16、数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.18(1)(2)【解析】(1)先利用同角的三角函数关系求得,再由求解即可;(2)在中,由正

17、弦定理可得,则,再由求解即可.【详解】解:(1)在中,所以,所以 (2)由(1)可知,所以,在中,因为,所以,因为,所以 , 所以.【点睛】本题考查已知三角函数值求值,考查正弦定理的应用.19(1)证明见解析(2)【解析】(1)因为,利用线面平行的判定定理可证出平面,利用点线面的位置关系,得出和,由于底面,利用线面垂直的性质,得出,且,最后结合线面垂直的判定定理得出平面,即可证出平面.(2)由(1)可知,两两垂直,建立空间直角坐标系,标出点坐标,运用空间向量坐标运算求出所需向量,分别求出平面和平面的法向量,最后利用空间二面角公式,即可求出的余弦值.【详解】(1)证明:因为,平面,平面,所以平面

18、,因为平面,平面,所以可设平面平面,又因为平面,所以.因为平面,平面,所以,从而得.因为底面,所以.因为,所以.因为,所以平面.综上,平面.(2)解:由(1)可得,两两垂直,以为原点,所在直线分别为,轴,建立如图所示的空间直角坐标系.因为,所以,则,所以,.设是平面的法向量,由取取,得.设是平面的法向量,由得取,得,所以,即的余弦值为.【点睛】本题考查线面垂直的判定和空间二面角的计算,还运用线面平行的性质、线面垂直的判定定理、点线面的位置关系、空间向量的坐标运算等,同时考查学生的空间想象能力和逻辑推理能力.20(1);(2)【解析】(1)将有两个零点转化为方程有两个相异实根,令求导,利用其单调性和极值求解;(2)将问题转化为对一切恒成立,令,求导,研究单调性,求出其最值即可得结果.【详解】(1)有两个零点关于的方程有两个相异实根由,知有两个零点有两个相异实根.令,则,由得:,由得:,在单调递增,在单调递减,又当时,当时,当时,有两个零点时,实数的取值范围为;(2)当时,原命题等价于对一切恒成立对一切恒成立.令 令,则在上单增又,使即当时,当时,即在递减,在递增,由知 函数在单调递增即,实数的取值范围为.【点睛】本题考查利用导数研究函数的单调性,极值,最值问题,考查学生转化能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论