版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高中数学选修2-2知识点总结第一章、导数1函数的平均变化率为空峑f(X2)一f(Sif(L)一f(TAxAxx,xAx21limAylimfgf)Ar0AxAx0Ax注1其中Ax是自变量的改变量,平均变化率可正,可负,可零。注2:函数的平均变化率可以看作是物体运动的平均速度。2、导函数的概念:函数yf(x)在xx0处的瞬时变化率是则称函数yf(x)在点x处可导,并把这个极限叫做yf(x)在x处的导数,记作f(x。)或y|xxxx0即八x0)=豐AyAxlimAx0f(x0+Ax)-f(x0)Ax3.函数的平均变化率的几何意义是割线的斜率函数的导数的几何意义是切线的斜率。4导数的背景(1)切线的
2、斜率;(2)瞬时速度5、常见的函数导数函数导函数(1)ycy0(2)yxnneN*)ynxn-i(3)yax(a0,a丰1)yaxlnayexyex(5)ylogx(a0,a丰1,x0)ay1xlnaylnxy-x(7)ysinxycosx(8)ycosxy-sinx6、常见的导数和定积分运算公式:若f(x),g(x)均可导(可积),则有:和差的导数运算f(x)g(x)=f(x)g(x)积的导数运算f(x)-g(x)f特别地:Cf(x)(x)g(x)f(x)g(x)孑(x)商的导数运算卩(x)f(x)g(;)_fx)g(x)(g(x)丰0)_g(x)g(x)l特别地:命幫复合函数的导数fffy
3、y-uxux微积分基本定理Jbf(xHF(a)-F(b)a(其中F(x)=f(x)和差的积分运算Jbf(x)f(x)dxJbf(x)dxJbf(x)dxa12a1a2Jbkf(x)dxkJbf(x)dx(k为常数)特别地:aa积分的区间可加性Jbf(x)dxJcf(x)dx+Jbf(x)dx(其中acb)aac.用导数求函数单调区间的步骤:求函数/(兀)的导数/(x)令/(x)0,解不等式,得x的范围就是递增区间.令/(x)0a性质5若f(x)0,xgla,b,则推广:Jbf(x)土f(x)土土f(x)dxJbf(x)dxfbf(x)dx土TOC o 1-5 h za12ma1a2推广:bf(
4、x)dxcif(x)dx+c2f(x)dx+Jbf(x)dx HYPERLINK l bookmark14aacc1k11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.(l)当对应的曲边梯形位于x轴上方时,定积分的值取正值,且等于x轴上方的图形面积;(2)当对应的曲边梯形位于x轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;(3)当位于x轴上方的曲边梯形面积等于位于x轴下方的曲边梯形面积时,定积分的值为0且等于x轴上方图形的面积减去下方的图形的面积.-Iy=siflj12k12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功
5、。13归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。归纳推理是由部分到整体,由个别到一般的推理。14归纳推理的思维过程大致如图:实验、观察*概括、推广*猜测一般性结论15归纳推理的特点:归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或
6、相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。类比推理的思维过程观察、比较联想、类推A推测新的结论演绎推理的定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。19演绎推理的主要形式:三段论20“三段论可以表示为:大前题:M是P小前提:S是M结论:S是P。其中是大前提,它提供了一个一般性的原理;是小前提,它指出了一个特殊对象;是结论,它是根据一般性原理,对特殊情况做出的判断。直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。综合法就是
7、“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件.分析法和综合法常结合使用,不要将它们割裂开。24反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。25.反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立;(2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确,即所求证命题正确。26常见的“结论词”与“反义词”原结论词反
8、义词原结论词反义词至少有一个一个也没有对所有的x都成立存在x使不成立至多有一个至少有两个对任意x不成立存在X使成立至少有n个至多有n-1个p或q-且q至多有n个至少有n+1个p且qip或q27.反证法的思维方法:正难则反28.归缪矛盾与已知条件矛盾:与已有公理、定理、定义矛盾;自相矛盾.数学归纳法(只能证明与正整数有关的数学命题)的步骤证明:当n取第一个值nCN*)时命题成立;00假设当n=k(kN*,且kn0)时命题成立,证明当n=k+1时命题也成立.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确.注:常用于证明不完全归纳法推测所得命题的正确性的证明。第三章、数系的扩充和复数的
9、概念知识点复数的概念:形如a+bi的数叫做复数,其中i叫虚数单位,a叫实部,b叫虚部,数集C=a+biIa,br叫做复数集。规疋:a+bi=c+dia=c且.b=d,强调:两复数不能比较大小,只有相等或不相等。实数b=031数集的关系:复数Z1虚数一般虚数(主0纯虚数(=0复数的几何意义:复数与平面内的点或有序实数对一一对应。复平面:根据复数相等的定义,任何一个复数z=a+bi,都可以由一个有序实数对(a,b)唯一确定。由于有序实数对(a,b)与平面直角坐标系中的点对应,因此复数集与平面直角坐标系中的点集之间可以建立对应。这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚
10、轴。实轴上的点都表示实数除了原点外,虚轴上的点都表示纯虚数。求复数的模(绝对值)与复数z对应的向量OZ的模r叫做复数z=abi的模(也叫绝对值)记作zabi。由模的定义可知:z=|abi=Ja2+b2复数的加、减法运算及几何意义复数的加、减法法则:z=a+bi与=c+di,则z,z=a,c+(b,d)i。注:复数的加、减法运算也可以按向量的加、减法来进行。复数的乘法法则:(a+bi)(c+di)=(ac-bd)+(ad+bei。复数的除法法则:也=(abi)(cdi)=ac+bd+bcadi其中c-di叫做实数化因子c+di(c+di)(c一di)c2+d2c2+d236共轭复数:两复数a+bi与a-bi互为共轭复数,当b丰0时,它们叫做共轭虚数。常见的运算规律
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何写两个人的合同范本
- 生态农业体育旅游度假村建设项目可行性研究报告
- 园区税收合同范本
- 买床合同范本
- 大学英语Ⅱ (2023级艺体)学习通超星期末考试答案章节答案2024年
- 食品工艺学原理A学习通超星期末考试答案章节答案2024年
- 纺织品外贸跟单实务学习通超星期末考试答案章节答案2024年
- 建筑施工组织与管理学习通超星期末考试答案章节答案2024年
- 窗帘墙布一体化软装安装服务协议
- 台州市路桥区各级机关单位录用公务员真题
- 2023年温州鹿城区区属国企招聘选调笔试真题
- 《中国成人肥厚型心肌病诊断与治疗指南-2023》更新要点解读
- 硬件研发工程师生涯人物访谈报告
- 工程量清单及招标控制价编制、审核入库类服务方案
- 中班美术活动水(5篇)
- 中波广播发送系统概述
- 县疾控中心中层干部竞聘上岗实施方案
- 急性心肌梗死精美PPt完整版
- 物业日常巡查记录表.doc
- 门技术参数[图文借鉴]
- 《危险化学品安全处置服务协议》
评论
0/150
提交评论