版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线的焦点为,是抛物线上两个不同的点,若,则线段的中点到轴的距离为( )A5B3CD22
2、已知实数,满足约束条件,则目标函数的最小值为ABCD3若集合,则( )ABCD4以,为直径的圆的方程是ABCD5已知函数,则函数的图象大致为( )ABCD6已知i为虚数单位,则( )ABCD7已知数列的前项和为,且,则的通项公式( )ABCD8已知向量,若,则与夹角的余弦值为( )ABCD9一个超级斐波那契数列是一列具有以下性质的正整数:从第三项起,每一项都等于前面所有项之和(例如:1,3,4,8,16).则首项为2,某一项为2020的超级斐波那契数列的个数为( )A3B4C5D610设函数恰有两个极值点,则实数的取值范围是( )ABCD11已知函数,给出下列四个结论:函数的值域是;函数为奇函
3、数;函数在区间单调递减;若对任意,都有成立,则的最小值为;其中正确结论的个数是( )ABCD12已知复数满足,则的共轭复数是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知,则_.(填“”或“=”或“”).14某市公租房源位于、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,则该市的任意位申请人中,恰好有人申请小区房源的概率是_ .(用数字作答)15已知单位向量的夹角为,则=_.16若满足约束条件,则的最大值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列满足,且.(1)求证:数列是等差数列,并
4、求出数列的通项公式;(2)求数列的前项和.18(12分)已知各项均为正数的数列的前项和为,且是与的等差中项.(1)证明:为等差数列,并求;(2)设,数列的前项和为,求满足的最小正整数的值.19(12分)如图,底面ABCD是边长为2的菱形,平面ABCD,BE与平面ABCD所成的角为.(1)求证:平面平面BDE;(2)求二面角B-EF-D的余弦值.20(12分)已知函数.其中是自然对数的底数.(1)求函数在点处的切线方程;(2)若不等式对任意的恒成立,求实数的取值范围.21(12分)2019年春节期间,某超市准备举办一次有奖促销活动,若顾客一次消费达到400元则可参加一次抽奖活动,超市设计了两种抽
5、奖方案.方案一:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得60元的返金券,若抽到白球则获得20元的返金券,且顾客有放回地抽取3次.方案二:一个不透明的盒子中装有30个质地均匀且大小相同的小球,其中10个红球,20个白球,搅拌均匀后,顾客从中随机抽取一个球,若抽到红球则顾客获得80元的返金券,若抽到白球则未中奖,且顾客有放回地抽取3次.(1)现有两位顾客均获得抽奖机会,且都按方案一抽奖,试求这两位顾客均获得180元返金券的概率;(2)若某顾客获得抽奖机会.试分别计算他选择两种抽奖方案最终获得返金券的数
6、学期望;为了吸引顾客消费,让顾客获得更多金额的返金券,该超市应选择哪一种抽奖方案进行促销活动?22(10分)在平面直角坐标系中,直线的参数方程为(为参数)以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求直线的普通方程与曲线的直角坐标方程;(2)若射线与和分别交于点,求参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】由抛物线方程可得焦点坐标及准线方程,由抛物线的定义可知,继而可求出,从而可求出的中点的横坐标,即为中点到轴的距离.【详解】解:由抛物线方程可知,即,.设 则,即,所以.所以线段的中点到
7、轴的距离为.故选:D.【点睛】本题考查了抛物线的定义,考查了抛物线的方程.本题的关键是由抛物线的定义求得两点横坐标的和.2B【解析】作出不等式组对应的平面区域,目标函数的几何意义为动点到定点的斜率,利用数形结合即可得到的最小值【详解】解:作出不等式组对应的平面区域如图:目标函数的几何意义为动点到定点的斜率,当位于时,此时的斜率最小,此时故选B【点睛】本题主要考查线性规划的应用以及两点之间的斜率公式的计算,利用z的几何意义,通过数形结合是解决本题的关键3A【解析】先确定集合中的元素,然后由交集定义求解【详解】,.故选:A【点睛】本题考查求集合的交集运算,掌握交集定义是解题关键4A【解析】设圆的标
8、准方程,利用待定系数法一一求出,从而求出圆的方程.【详解】设圆的标准方程为,由题意得圆心为,的中点,根据中点坐标公式可得,又,所以圆的标准方程为:,化简整理得,所以本题答案为A.【点睛】本题考查待定系数法求圆的方程,解题的关键是假设圆的标准方程,建立方程组,属于基础题.5A【解析】用排除法,通过函数图像的性质逐个选项进行判断,找出不符合函数解析式的图像,最后剩下即为此函数的图像.【详解】设,由于,排除B选项;由于,所以,排除C选项;由于当时,排除D选项.故A选项正确.故选:A【点睛】本题考查了函数图像的性质,属于中档题.6A【解析】根据复数乘除运算法则,即可求解.【详解】.故选:A.【点睛】本
9、题考查复数代数运算,属于基础题题.7C【解析】利用证得数列为常数列,并由此求得的通项公式.【详解】由,得,可得().相减得,则(),又由,得,所以,所以为常数列,所以,故.故选:C【点睛】本小题考查数列的通项与前项和的关系等基础知识;考查运算求解能力,逻辑推理能力,应用意识.8B【解析】直接利用向量的坐标运算得到向量的坐标,利用求得参数m,再用计算即可.【详解】依题意, 而, 即, 解得, 则.故选:B.【点睛】本题考查向量的坐标运算、向量数量积的应用,考查运算求解能力以及化归与转化思想.9A【解析】根据定义,表示出数列的通项并等于2020.结合的正整数性质即可确定解的个数.【详解】由题意可知
10、首项为2,设第二项为,则第三项为,第四项为,第五项为第n项为且,则,因为,当的值可以为;即有3个这种超级斐波那契数列,故选:A.【点睛】本题考查了数列新定义的应用,注意自变量的取值范围,对题意理解要准确,属于中档题.10C【解析】恰有两个极值点,则恰有两个不同的解,求出可确定是它的一个解,另一个解由方程确定,令通过导数判断函数值域求出方程有一个不是1的解时t应满足的条件.【详解】由题意知函数的定义域为,.因为恰有两个极值点,所以恰有两个不同的解,显然是它的一个解,另一个解由方程确定,且这个解不等于1.令,则,所以函数在上单调递增,从而,且.所以,当且时,恰有两个极值点,即实数的取值范围是.故选
11、:C【点睛】本题考查利用导数研究函数的单调性与极值,函数与方程的应用,属于中档题.11C【解析】化的解析式为可判断,求出的解析式可判断,由得,结合正弦函数得图象即可判断,由得可判断.【详解】由题意,所以,故正确;为偶函数,故错误;当时,单调递减,故正确;若对任意,都有成立,则为最小值点,为最大值点,则的最小值为,故正确.故选:C.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题.12B【解析】根据复数的除法运算法则和共轭复数的定义直接求解即可.【详解】由,得,所以故选:B【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复
12、数的定义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】注意到,故只需比较与1的大小即可.【详解】由已知,故有.又由,故有.故答案为:.【点睛】本题考查对数式比较大小,涉及到换底公式的应用,考查学生的数学运算能力,是一道中档题.14【解析】基本事件总数,恰好有2人申请小区房源包含的基本事件个数,由此能求出该市的任意5位申请人中,恰好有2人申请小区房源的概率【详解】解:某市公租房源位于、三个小区,每位申请人只能申请其中一个小区的房子,申请其中任意一个小区的房子是等可能的,该市的任意5位申请人中,基本事件总数,该市的任意5位申请人中,恰好有2人申请小区房源包含的基本事件个
13、数:,该市的任意5位申请人中,恰好有2人申请小区房源的概率是故答案为:【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,属于中档题15【解析】因为单位向量的夹角为,所以,所以=.164【解析】作出可行域如图所示:由,解得.目标函数,即为,平移斜率为-1的直线,经过点时,.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析,;(2).【解析】(1)将等式变形为,进而可证明出是等差数列,确定数列的首项和公差,可求得的表达式,进而可得出数列的通项公式;(2)利用错位相减法可求得数列的前项和.【详解】(1)因为,所以,即,所以数列是等差数列
14、,且公差,其首项所以,解得;(2),得,所以.【点睛】本题考查利用递推公式证明等差数列,同时也考查了错位相减法求和,考查推理能力与计算能力,属于中等题.18(1)见解析,(2)最小正整数的值为35.【解析】(1)由等差中项可知,当时,得,整理后可得,从而证明为等差数列,继而可求.(2),则可求出,令,即可求出 的取值范围,进而求出最小值.【详解】解析:(1)由题意可得,当时,当时,整理可得,是首项为1,公差为1的等差数列,.(2)由(1)可得,解得,最小正整数的值为35.【点睛】本题考查了等差中项,考查了等差数列的定义,考查了 与 的关系,考查了裂项相消求和.当已知有 与 的递推关系时,常代入
15、 进行整理.证明数列是等差数列时,一般借助数列,即后一项与前一项的差为常数.19(1)证明见解析;(2)【解析】(1)要证明平面平面BDE,只需在平面内找一条直线垂直平面BDE即可;(2)以O为坐标原点,OA,OB,OG所在直线分别为x、y、z轴建立如图空间直角坐标系,分别求出平面BEF的法向量,平面的法向量,算出即可.【详解】(1)平面ABCD,平面ABCD.又底面ABCD是菱形,.,平面BDE,设AC,BD交于O,取BE的中点G,连FG,OG,四边形OCFG是平行四边形,平面BDE平面BDE,又因平面BEF,平面平面BDE.(2)以O为坐标原点,OA,OB,OG所在直线分别为x、y、z轴建
16、立如图空间直角坐标系BE与平面ABCD所成的角为,.,设平面BEF的法向量为,设平面的法向量设二面角的大小为.【点睛】本题考查线面垂直证面面垂直、面面所成角的计算,考查学生的计算能力,解决此类问题最关键是准确写出点的坐标,是一道中档题.20(1);(2).【解析】(1)利用导数的几何意义求出切线的斜率,再求出切点坐标即可得在点处的切线方程;(2)令,然后利用导数并根据a的情况研究函数的单调性和最值.【详解】(1),又,切线方程为,即.(2)令,若,则在上单调递减,又,恒成立,在上单调递减,又,恒成立.若,令,易知与在上单调递减,在上单调递减,当即时,在上恒成立,在上单调递减,即在上单调递减,又
17、,恒成立,在上单调递减,又,恒成立,当即时,使,在递增,此时,在递增,不合题意.综上,实数的取值范围是.【点睛】本题主要考查导数的几何意义及构造函数解决含参数的不等式恒成立时求参数的取值范围问题,第二问的难点是构造函数后二次求导问题,对分类讨论思想及化归与等价转化思想要求较高,难度较大,属拔高题.21 (1) (2)第一种抽奖方案.【解析】(1)方案一中每一次摸到红球的概率为,每名顾客有放回的抽3次获180元返金劵的概率为,根据相互独立事件的概率可知两顾客都获得180元返金劵的概率 (2)分别计算方案一,方案二顾客获返金卷的期望,方案一列出分布列计算即可,方案二根据二项分布计算期望即可 根据得出结论.【详解】(1)选择方案一,则每一次摸到红球的概率为设“每位顾客获得180元返金劵”为事件A,则所以两位顾客均获得180元返金劵的概率(2)若选择抽奖方案一,则每一次摸到红球的概率为,每一次摸到白球的概率为.设获得返金劵金额为元,则可能的取值为60,100,140,180.则;.所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 保安员2024年度聘用协议细则
- 农业旅游观光体验园建设项目可行性研究报告
- 松江园区食堂外包合同范本
- 十年公司成立十周年庆典
- 生意电子合同范本
- 租商铺的租赁合同范本
- 2021中国文学史(四)学习通超星期末考试答案章节答案2024年
- 2024年教案革新:小学教育学的实践路径
- 代理类合同范本
- 重庆开州区教育事业单位赴外招聘真题
- 新《事业单位财务规则》培训讲义0
- 2024土石坝安全监测技术规范
- 【课件】2024届高三英语高考前指导最后一课(放松心情)课件
- 食管癌围手术期护理教学查房
- 2024年河南投资集团有限公司招聘笔试冲刺题(带答案解析)
- 2024年院感安全注射培训
- 孩子分为四种:认知型、模仿型、逆思型、开放型
- 小班故事《快乐的轮胎》课件
- (2024年)反垄断法及反不正当竞争法课件
- 九年级英语《Unit 13 Were trying to save the earth!》教学设计
- 《风电场项目经济评价规范》(NB-T 31085-2016)
评论
0/150
提交评论