




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,随机变量的分布列是01则当在内增大时,( )A减小,减小B减小,增大C增大,减小D增大,增
2、大2给定下列四个命题:若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;若一个平面经过另一个平面的垂线,则这两个平面相互垂直;垂直于同一直线的两条直线相互平行;若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直其中,为真命题的是( )A和 B和 C和 D和3定义两种运算“”与“”,对任意,满足下列运算性质:,;() ,则(2020)(20202018)的值为( )ABCD4已知函数.设,若对任意不相等的正数,恒有,则实数a的取值范围是( )ABCD5数列满足:,则数列前项的和为ABCD6已知无穷等比数列的公比为2,且,则( )ABCD7设为自然对数的底数,
3、函数,若,则( )ABCD8设函数(,为自然对数的底数),定义在上的函数满足,且当时,若存在,且为函数的一个零点,则实数的取值范围为( )ABCD9若集合,则( )ABCD10如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积( )ABCD11某几何体的三视图如图所示,若侧视图和俯视图均是边长为的等边三角形,则该几何体的体积为ABCD12如下的程序框图的算法思路源于我国古代数学名著九章算术中的“更相减损术”执行该程序框图,若输入的a,b分别为176,320,则输出的a为( )A16B18C20D15二、填空题:本题共4小题,每小题5分,共20分。13如图,某地一
4、天从时的温度变化曲线近似满足函数,则这段曲线的函数解析式为_14已知是第二象限角,且,则_.15已知函数,若函数有3个不同的零点x1,x2,x3(x1x2x3),则的取值范围是_16定义在上的偶函数满足,且,当时,.已知方程在区间上所有的实数根之和为.将函数的图象向右平移个单位长度,得到函数的图象,则_,_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,.(1)若不等式的解集为,求的值.(2)若当时,求的取值范围.18(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下
5、的频率分布直方图:(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率. 现对生产线上生产的零件进行成箱包装出售,每箱个. 企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元. 若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用. 现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值
6、作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.19(12分)有最大值,且最大值大于.(1)求的取值范围;(2)当时,有两个零点,证明:.(参考数据:)20(12分)表示,中的最大值,如,己知函数,.(1)设,求函数在上的零点个数;(2)试探讨是否存在实数,使得对恒成立?若存在,求的取值范围;若不存在,说明理由.21(12分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),若直线与圆相切,求实数的值.22(10分)如图,在矩形中,点分别是线段的中点,分别将沿折起,沿折起,使得重合于点,连结.()求证:平面平面
7、;()求直线与平面所成角的正弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】,判断其在内的单调性即可【详解】解:根据题意在内递增,是以为对称轴,开口向下的抛物线,所以在上单调递减,故选:C【点睛】本题考查了利用随机变量的分布列求随机变量的期望与方差,属于中档题2D【解析】利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故错误;由平面与平面垂直的判定可知正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故错误;若
8、两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故正确综上,真命题是.故选:D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题3B【解析】根据新运算的定义分别得出2020和20202018的值,可得选项.【详解】由() ,得(+2),又,所以, ,以此类推,202020182018,又,所以, ,以此类推,2020,所以(2020)(20202018),故选:B.【点睛】本题考查定义新运算,关键在于理解,运用新定义进行求值,属于中档题.4D【解析】求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论
9、其单调性即可求解.【详解】的定义域为,当时,故在单调递减;不妨设,而,知在单调递减,从而对任意、,恒有,即,令,则,原不等式等价于在单调递减,即,从而,因为,所以实数a的取值范围是故选:D.【点睛】此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.5A【解析】分析:通过对anan+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可详解:,又=5,即,数列前项的和为,故选A点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2) ; (3);(4) ;
10、此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.6A【解析】依据无穷等比数列求和公式,先求出首项,再求出,利用无穷等比数列求和公式即可求出结果。【详解】因为无穷等比数列的公比为2,则无穷等比数列的公比为。由有,解得,所以,故选A。【点睛】本题主要考查无穷等比数列求和公式的应用。7D【解析】利用与的关系,求得的值.【详解】依题意,所以故选:D【点睛】本小题主要考查函数值的计算,属于基础题.8D【解析】先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,所以在上单调递减,所以在R上单调递减.
11、因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,所以函数在时单调递减,由选项知,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.【点睛】本题主要考查函数与方程的综合问题,难度较大.9B【解析】根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【详解】依题意,;而,故,则.故选:B.【点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.10C【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可【详解】解:几何体的直观图如图,是正方体的一部分,PABC,正方体的棱
12、长为2,该几何体的表面积:故选C【点睛】本题考查三视图求解几何体的直观图的表面积,判断几何体的形状是解题的关键11C【解析】由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C12A【解析】根据题意可知最后计算的结果为的最大公约数.【详解】输入的a,b分别为,根据流程图可知最后计算的结果为的最大公约数,按流程图计算,易得176和320的最大公约数为16,故选:A.【点睛】本题考查的是利用更相减损术求两个数的最大公约数,难度较易.二、填空题:本题共4小题,每小题5分,共20分。13,【解析】根据图象得出该函数的最大值和最小值,可得,结合图象求得该函数
13、的最小正周期,可得出,再将点代入函数解析式,求出的值,即可求得该函数的解析式.【详解】由图象可知,从题图中可以看出,从时是函数的半个周期,则,.又,得,取,所以,故答案为:,【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.14【解析】由是第二象限角,且,可得,由及两角和的正切公式可得的值.【详解】解:由是第二象限角,且,可得,由,可得,代入,可得,故答案为:.【点睛】本题主要考查同角三角函数的基本关系及两角和的正切公式,相对不难,注意运算的准确性.15【解析】先根据题意,求出的解得或,然后求出f(x)的导函数,求其单调性以及最值,在根据题意求出函数有3个不同的零点x1,x2,x3
14、(x1x2x3),分情况讨论求出的取值范围.【详解】解:令t=f(x),函数有3个不同的零点,即+m=0有两个不同的解,解之得 即或因为的导函数,令,解得xe,解得0 xe,可得f(x)在(0,e)递增,在递减;f(x)的最大值为 ,且 且f(1)=0;要使函数有3个不同的零点,(1)有两个不同的解,此时有一个解;(2)有两个不同的解,此时有一个解当有两个不同的解,此时有一个解,此时 ,不符合题意;或是不符合题意;所以只能是 解得 ,此时=-m,此时 有两个不同的解,此时有一个解此时 ,不符合题意;或是不符合题意;所以只能是解得 ,此时=,综上:的取值范围是故答案为【点睛】本题主要考查了函数与
15、导函数的综合,考查到了函数的零点,导函数的应用,以及数形结合的思想、分类讨论的思想,属于综合性极强的题目,属于难题.162 4 【解析】根据函数为偶函数且,所以的周期为,的实数根是函数和函数的图象的交点的横坐标,在平面直角坐标系中画出函数图象,根据函数的对称性可得所有实数根的和为,从而可得参数的值,最后求出函数的解析式,代入求值即可.【详解】解:因为为偶函数且,所以的周期为.因为时,所以可作出在区间上的图象,而方程的实数根是函数和函数的图象的交点的横坐标,结合函数和函数在区间上的简图,可知两个函数的图象在区间上有六个交点.由图象的对称性可知,此六个交点的横坐标之和为,所以,故.因为,所以.故.
16、故答案为:;【点睛】本题考查函数的奇偶性、周期性、对称性的应用,函数方程思想,数形结合思想,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)【解析】试题分析:(1)求得的解集,根据集合相等,列出方程组,即可求解的值;(2)当时,恒成立,当时,转化为,设,求得函数的最小值,即可求解的取值范围.试题解析:(1)由,得,因为不等式的解集为,所以,故不等式可化为,解得,所以,解得.(2)当时,恒成立,所以.当时,可化为,设,则,所以当时,所以.综上,的取值范围是.18(1);(2)分布列见详解,期望为;(3)余下所有零件不用检验,理由见详解.【解析】(1)计算
17、的频率,并且与进行比较,判断中位数落在的区间,然后根据频率的计算方法,可得结果.(2)计算位于之外的零件中随机抽取个的总数,写出所有可能取值,并计算相对应的概率,列出分布列,计算期望,可得结果.(3)计算整箱的费用,根据余下零件个数服从二项分布,可得余下零件个数的期望值,然后计算整箱检验费用与赔偿费用之和的期望值,进行比较,可得结果.【详解】(1)尺寸在的频率:尺寸在的频率:且所以可知尺寸的中位数落在假设尺寸中位数为所以所以这个零件尺寸的中位数(2)尺寸在的个数为尺寸在的个数为的所有可能取值为1,2,3,4则,所以的分布列为(3)二等品的概率为如果对余下的零件进行检验则整箱的检验费用为(元)余
18、下二等品的个数期望值为如果不对余下的零件进行检验,整箱检验费用与赔偿费用之和的期望值为(元)所以,所以可以不对余下的零件进行检验.【点睛】本题考查频率分布直方图的应用,掌握中位数,平均数,众数的计算方法,中位数的理解应该从中位数开始左右两边的频率各为0.5,考验分析能力以及数据处理,属中档题.19(1);(2)证明见解析.【解析】(1)求出函数的定义域为,分和两种情况讨论,分析函数的单调性,求出函数的最大值,即可得出关于实数的不等式,进而可求得实数的取值范围;(2)利用导数分析出函数在上递增,在上递减,可得出,由,构造函数,证明出,进而得出,再由函数在区间上的单调性可证得结论.【详解】(1)函
19、数的定义域为,且.当时,对任意的,此时函数在上为增函数,函数为最大值;当时,令,得.当时,此时函数单调递增;当时,此时函数单调递减.所以,函数在处取得极大值,亦即最大值,即,解得.综上所述,实数的取值范围是;(2)当时,定义域为,当时,;当时,.所以,函数的单调递增区间为,单调递减区间为.由于函数有两个零点、且,构造函数,其中,令,当时,所以,函数在区间上单调递减,则,则.所以,函数在区间上单调递减,即,即,且,而函数在上为减函数,所以,因此,.【点睛】本题考查利用函数的最值求参数,同时也考查了利用导数证明函数不等式,利用所证不等式的结构构造新函数是解答的关键,考查推理能力与计算能力,属于难题.20(1)个;(1)存在,.【解析】试题分析:(1)设,对其求导,及最小值,从而得到的解析式,进一步求值域即可;(1)分别对和两种情况进行讨论,得到的解析式,进一步构造,通过求导得到最值,得到满足条件的的范围试题解析:(1)设,1分令,得递增;令,得递减,1分,即,3分设,结合与在上图象可知,这两个函数的图象在上有两个交点,即在上零点的个数为15分(或由方程在上有两根可得)(1)假设存在实数,使得对恒成立,则,对恒成立,即,对恒成立 ,6分设,令,得递增;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论