版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是双曲线的左右焦点,过的直线与双曲线的两支分别交于两点(A在右支,B在左支)若为等边三角形,则双曲线的离心率为( )ABCD2的展开式中的系数为( )A30B40C40D503已知不同直线、与不同平面、,且,则下列说法中正确的是(
2、)A若,则B若,则C若,则D若,则4已知函数,且的图象经过第一、二、四象限,则,的大小关系为( )ABCD5已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为,且,则此三棱锥外接球表面积的最小值为( )ABCD6已知数列满足,(),则数列的通项公式( )ABCD7山东烟台苹果因“果形端正、色泽艳丽、果肉甜脆、香气浓郁”享誉国内外.据统计,烟台苹果(把苹果近似看成球体)的直径(单位:)服从正态分布,则直径在内的概率为( )附:若,则,.A0.6826B0.8413C0.8185D0.95448刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术
3、中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为( )ABCD9已知向量,设函数,则下列关于函数的性质的描述正确的是A关于直线对称B关于点对称C周期为D在上是增函数10如图,圆锥底面半径为,体积为,、是底面圆的两条互相垂直的直径,是母线的中点,已知过与的平面与圆锥侧面的交线是以为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点的距离等于( )AB1CD11已知向量,
4、满足,在上投影为,则的最小值为( )ABCD12复数,若复数在复平面内对应的点关于虚轴对称,则等于( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若函数与函数,在公共点处有共同的切线,则实数的值为_14已知随机变量服从正态分布,则_15记复数za+bi(i为虚数单位)的共轭复数为,已知z2+i,则_16设为锐角,若,则的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知圆,定点 ,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线(1)求曲线的方程(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上
5、,若存在,求出该直线方程;若不是,说明理由.18(12分)(本小题满分12分)已知椭圆C:x2a2+y2b2=1(ab0)的离心率为22,连接椭圆四个顶点形成的四边形面积为42(1)求椭圆C的标准方程;(2)过点A(1,0)的直线与椭圆C交于点M, N,设P为椭圆上一点,且OM+ON=tOP(t0)O为坐标原点,当|OM-ON|453时,求t的取值范围19(12分)已知函数,(1)若,求的单调区间和极值;(2)设,且有两个极值点,若,求的最小值.20(12分)直线与抛物线相交于,两点,且,若,到轴距离的乘积为(1)求的方程;(2)设点为抛物线的焦点,当面积最小时,求直线的方程21(12分)设函
6、数(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围22(10分)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)写出曲线的极坐标方程;(2)点是曲线上的一点,试判断点与曲线的位置关系参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据双曲线的定义可得的边长为,然后在中应用余弦定理得的等式,从而求得离心率【详解】由题意,又,在中,即,故选:D【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线的定义把到两焦点距离用表示,然后用余弦定理建立关系式2
7、C【解析】先写出的通项公式,再根据的产生过程,即可求得.【详解】对二项式,其通项公式为的展开式中的系数是展开式中的系数与的系数之和.令,可得的系数为;令,可得的系数为;故的展开式中的系数为.故选:C.【点睛】本题考查二项展开式中某一项系数的求解,关键是对通项公式的熟练使用,属基础题.3C【解析】根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果.【详解】对于,若,则可能为平行或异面直线,错误;对于,若,则可能为平行、相交或异面直线,错误;对于,若,且,由面面垂直的判定定理可知,正确;对于,若,只有当垂直于的交线时才有,错误.故选:.【点睛】本题考查空间中线面关系、面面关系相
8、关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.4C【解析】根据题意,得,则为减函数,从而得出函数的单调性,可比较和,而,比较,即可比较.【详解】因为,且的图象经过第一、二、四象限,所以,所以函数为减函数,函数在上单调递减,在上单调递增,又因为,所以,又,则|,即,所以.故选:C.【点睛】本题考查利用函数的单调性比较大小,还考查化简能力和转化思想.5B【解析】根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,
9、即为三棱锥,且长方体的长、宽、高分别为,此三棱锥的外接球即为长方体的外接球,且球半径为,三棱锥外接球表面积为,当且仅当,时,三棱锥外接球的表面积取得最小值为故选B【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题6A【解析】利用数列的递推关系式,通过累加法求解即可【详解】数列满足:,可得以上各式相加可得:,故选:【点睛】本题考查数列的递推关系式的应用,数列累加法
10、以及通项公式的求法,考查计算能力7C【解析】根据服从的正态分布可得,将所求概率转化为,结合正态分布曲线的性质可求得结果.【详解】由题意,则,所以,.故果实直径在内的概率为0.8185.故选:C【点睛】本题考查根据正态分布求解待定区间的概率问题,考查了正态曲线的对称性,属于基础题.8A【解析】设圆的半径为,每个等腰三角形的顶角为,则每个等腰三角形的面积为,由割圆术可得圆的面积为,整理可得,当时即可为所求.【详解】由割圆术可知当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,设圆的半径为,每个等腰三角形的顶角为,所以每个等腰三角形的面积为,所以圆的面积为,即,所以当时,可得,故选:A【点
11、睛】本题考查三角形面积公式的应用,考查阅读分析能力.9D【解析】当时,f(x)不关于直线对称;当时, ,f(x)关于点对称;f(x)得周期,当时, ,f(x)在上是增函数本题选择D选项.10D【解析】建立平面直角坐标系,求得抛物线的轨迹方程,解直角三角形求得抛物线的焦点到圆锥顶点的距离.【详解】将抛物线放入坐标系,如图所示,设抛物线,代入点,可得焦点为,即焦点为中点,设焦点为,.故选:D【点睛】本小题考查圆锥曲线的概念,抛物线的性质,两点间的距离等基础知识;考查运算求解能力,空间想象能力,推理论证能力,应用意识.11B【解析】根据在上投影为,以及,可得;再对所求模长进行平方运算,可将问题转化为
12、模长和夹角运算,代入即可求得.【详解】在上投影为,即 又 本题正确选项:【点睛】本题考查向量模长的运算,对于含加减法运算的向量模长的求解,通常先求解模长的平方,再开平方求得结果;解题关键是需要通过夹角取值范围的分析,得到的最小值.12A【解析】先通过复数在复平面内对应的点关于虚轴对称,得到,再利用复数的除法求解.【详解】因为复数在复平面内对应的点关于虚轴对称,且复数,所以所以故选:A【点睛】本题主要考查复数的基本运算和几何意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】函数的定义域为,求出导函数,利用曲线与曲线公共点为由于在公共点处有共同的切线,解得,联立解得的值
13、【详解】解:函数的定义域为,设曲线与曲线公共点为,由于在公共点处有共同的切线,解得,由,可得联立,解得故答案为:【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题140.22.【解析】正态曲线关于x对称,根据对称性以及概率和为1求解即可。【详解】【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题1534i【解析】计算得到z2(2+i)23+4i,再计算得到答案.【详解】z2+i,z2(2+i)23+4i,则故答案为:34i【点睛】本题考查了复数的运算,共轭复数,意在考查学生的计算能力.16【解析】为锐角,故.三、解答题:共70分。解答应写出文字
14、说明、证明过程或演算步骤。17(1);(2)存在,.【解析】(1)设以为直径的圆心为,切点为,取关于轴的对称点,连接,计算得到,故轨迹为椭圆,计算得到答案.(2)设直线的方程为,设,联立方程得到,计算,得到答案.【详解】(1)设以为直径的圆心为,切点为,则,取关于轴的对称点,连接,故,所以点的轨迹是以为焦点,长轴为4的椭圆,其中,曲线方程为.(2)设直线的方程为,设,直线的方程为,同理,所以,即,联立,所以,代入得,所以点都在定直线上.【点睛】本题考查了轨迹方程,定直线问题,意在考查学生的计算能力和综合应用能力.18(1)x24+y22=1;(2)t-1,-63)(63,1【解析】试题分析:本
15、题主要考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力第一问,先利用离心率、a2=b2+c2、四边形的面积列出方程,解出a和b的值,从而得到椭圆的标准方程;第二问,讨论直线MN的斜率是否存在,当直线MN的斜率存在时,直线方程与椭圆方程联立,消参,利用韦达定理,得到x1+x2、x1x2,利用OM+ON=tOP列出方程,解出P(x,y),代入到椭圆上,得到t2的值,再利用|OM-ON|0恒成立,x1+x2=4k21+2k2,x1x2=2k2-41+2k2,y1+y2=k(x1+x2)-2k=-2k1+2k2,又OM+ON=tOP,
16、x1+x2=tx,y1+y2=ty,x=x1+x2t=4k2t(1+2k2),y=y1+y2t=-2kt(1+2k2),因为点P在椭圆x24+y22=1上,所以16k4t2(1+2k2)2+8k2t2(1+2k2)2=4,即2k2=t2(1+2k2),t2=2k21+2k2=1-11+2k2,又|OM-ON|453,即|NM|453,1+k2|x1-x2|453,整理得:1+k24+6k21+2k20,解得k21或k2-813(舍),t2=1-11+2k2,23t21,即t(-1,-63)(63,1)当直线MN的斜率不存在时,M(1,62),N(1,-62),此时t=1,t-1,-63)(63
17、,1考点:椭圆的标准方程及其几何性质、直线与椭圆的位置关系19(1)增区间为,减区间为; 极小值,无极大值;(2)【解析】(1)求出f(x)的导数,解不等式,即可得到函数的单调区间,进而得到函数的极值;(2)由题意可得,求出的表达式,求出h(t)的最小值即可【详解】(1)将代入中,得到,求导,得到,结合,当得到: 增区间为,当,得减区间为且在时有极小值,无极大值.(2)将解析式代入,得,求导得到,令,得到,,因为,所以设,令,则所以在单调递减,又因为所以,所以 或又因为,所以 所以,所以的最小值为.【点睛】本题考查了函数的单调性、极值、最值问题,考查导数的应用以及函数的极值的意义,考查转化思想
18、与减元意识,是一道综合题20(1);(2)【解析】(1)设出两点的坐标,由距离之积为16,可得.利用向量的数量积坐标运算,将转化为.再利用两点均在抛物线上,即可求得p的值,从而求出抛物线的方程;(2)设出直线l的方程,代入抛物线方程,由韦达定理发现直线l恒过定点,将面积用参数t表示,求出其最值,并得出此时的直线方程.【详解】解:(1)由题设,因为,到轴的距离的积为,所以,又因为,所以抛物线的方程为(2)因为直线与抛物线两个公共点,所以的斜率不为,所以设联立,得,即,即直线恒过定点,所以,当时,面积取得最小值,此时.【点睛】本题考查了抛物线的标准方程的求法,直线与抛物线相交的问题,其中垂直条件的转化,直线过定点均为该题的关键,属于综合性较强的题.21(1);(2).【解析】(1)通过分类讨论去掉绝对值符号,进而解不等式组求得结果;(2)将不等式整理为,根据能成立思想可知,由此构造不等式求得结果.【详解】(1)当时,可化为,由,解得;由,解得;由,解得综上所述:所以原不等式的解集为(2),有解,即,又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度装饰装修工程安装合同
- 2024年工程材料供应与验收合同
- 公司员工检讨书
- 2024年度新能源发电设备采购与销售合同
- 2024年度W公司环保服务合同协议书
- 2024年建筑公司员工聘用合同
- 2024年度网络通讯工程安全文明施工管理协议
- 2024年大型油田勘探开发合作合同(海外)
- 2024年度某航空公司飞机采购合同
- 2024年度区块链应用合作协议
- 行政服务中心窗口工作人员手册
- JGJ_T231-2021建筑施工承插型盘扣式钢管脚手架安全技术标准(高清-最新版)
- 最新患者用药情况监测
- 试桩施工方案 (完整版)
- ESTIC-AU40使用说明书(中文100版)(共138页)
- 河北省2012土建定额说明及计算规则(含定额总说明)解读
- 中工商计算公式汇总.doc
- 深圳市建筑装饰工程消耗量标准(第三版)2003
- 《初中英语课堂教学学困生转化个案研究》开题报告
- 恒温箱PLC控制系统毕业设计
- 176033山西《装饰工程预算定额》定额说明及计算规则
评论
0/150
提交评论