版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知(i为虚数单位,),则ab等于( )A2B-2CD2已知实数x,y满足约束条件,若的最大值为2,则实数k的值为
2、( )A1BC2D3若各项均为正数的等比数列满足,则公比( )A1B2C3D44若函数的定义域为Mx|2x2,值域为Ny|0y2,则函数的图像可能是( )ABCD5在等差数列中,若为前项和,则的值是( )A156B124C136D1806已知f(x),g(x)都是偶函数,且在0,+)上单调递增,设函数F(x)=f(x)+g(1-x)-|f(x)-g(1-x)|,若a0,则( )AF(-a)F(a)且F(1+a)F(1-a)BF(-a)F(a)且F(1+a)F(1-a)CF(-a)F(a)且F(1+a)F(1-a)DF(-a)F(a)且F(1+a)F(1-a)7已知,如图是求的近似值的一个程序框
3、图,则图中空白框中应填入ABCD8已知实数,函数在上单调递增,则实数的取值范围是( )ABCD9已知全集,集合,则( )ABCD10为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度11 若数列满足且,则使的的值为( )ABCD12我国古代数学名著数书九章中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水.天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸.若盆中积水深九寸,则平地降雨量是(注:平地降雨量等于盆中积水体积除以盆口面积;一尺等于十寸;台体的体积公式).A2寸B3寸C4寸D5寸二、填空
4、题:本题共4小题,每小题5分,共20分。13利用等面积法可以推导出在边长为a的正三角形内任意一点到三边的距离之和为定值,类比上述结论,利用等体积法进行推导,在棱长为a的正四面体内任意一点到四个面的距离之和也为定值,则这个定值是_14二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为_.15设、满足约束条件,若的最小值是,则的值为_.16如图,某市一学校位于该市火车站北偏东方向,且,已知是经过火车站的两条互相垂直的笔直公路,CE,DF及圆弧都是学校道路,其中,以学校为圆心,半径为的四分之一圆弧分别与相切于点.当地政府欲投资开发区域发展经济,其中分别在公路上,且与圆弧相切,设,的面
5、积为.(1)求关于的函数解析式;(2)当为何值时,面积为最小,政府投资最低?三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值18(12分)已知数列满足,其前n项和为.(1)通过计算,猜想并证明数列的通项公式;(2)设数列满足,若数列是单调递减数列,求常数t的取值范围.19(12分)设函数(1)当时,解不等式;(2)若的解集为,求证:20(12分)数列满足,其前n项和为,数列的前n项积为.(1)求和数列的通项公式;(
6、2)设,求的前n项和,并证明:对任意的正整数m、k,均有.21(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,且曲线的左焦点在直线上.()求的极坐标方程和曲线的参数方程;()求曲线的内接矩形的周长的最大值.22(10分)在平面直角坐标系xOy中,曲线C1的参数方程为 (为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心为(2,),半径为1的圆(1)求曲线C1的普通方程和C2的直角坐标方程;(2)设M为曲线C1上的点,N为曲线C2上的点,求|MN|的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。
7、在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】利用复数代数形式的乘除运算化简,再由复数相等的条件列式求解【详解】,得,故选:【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,意在考查学生对这些知识的理解掌握水平,是基础题2B【解析】画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【详解】可行域如图中阴影部分所示,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.3C【解析】由正项等比数列满
8、足,即,又,即,运算即可得解.【详解】解:因为,所以,又,所以,又,解得.故选:C.【点睛】本题考查了等比数列基本量的求法,属基础题.4B【解析】因为对A不符合定义域当中的每一个元素都有象,即可排除;对B满足函数定义,故符合;对C出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对D因为值域当中有的元素没有原象,故可否定故选B5A【解析】因为,可得,根据等差数列前项和,即可求得答案.【详解】,.故选:A.【点睛】本题主要考查了求等差数列前项和,解题关键是掌握等差中项定义和等差数列前项和公式,考查了分析能力和计算能力,属于基础题.6A【解析】试题分析:由题意
9、得,F(x)=2g(1-x),f(x)g(1-x)2f(x),f(x)g(1-x),F(-a)=2g(1+a),f(a)=f(-a)g(1+a)2f(-a),f(a)=f(-a)g(1+a),F(a)=2g(1-a),f(a)g(1-a)2f(a),f(a)0,(a+1)2-(a-1)2=4a0,|1+a|a-1|g(1+a)g(1-a),若f(a)g(1+a):F(-a)=2g(1+a),F(a)=2g(1-a),F(-a)F(a),若g(1-a)f(a)g(1+a):F(-a)=2f(-a)=2f(a),F(a)=2g(1-a),F(-a)F(a),若f(a)g(1-a):F(-a)=2f
10、(-a)=2f(a),F(a)=2f(a),F(-a)=F(a),综上可知F(-a)F(a),同理可知F(1+a)F(1-a),故选A.考点:1.函数的性质;2.分类讨论的数学思想.【思路点睛】本题在在解题过程中抓住偶函数的性质,避免了由于单调性不同导致1-a与1+a大小不明确的讨论,从而使解题过程得以优化,另外,不要忘记定义域,如果要研究奇函数或者偶函数的值域、最值、单调性等问题,通常先在原点一侧的区间(对奇(偶)函数而言)或某一周期内(对周期函数而言)考虑,然后推广到整个定义域上.7C【解析】由于中正项与负项交替出现,根据可排除选项A、B;执行第一次循环:,若图中空白框中填入,则,若图中空
11、白框中填入,则,此时不成立,;执行第二次循环:由均可得,若图中空白框中填入,则,若图中空白框中填入,则,此时不成立,;执行第三次循环:由可得,符合题意,由可得,不符合题意,所以图中空白框中应填入,故选C8D【解析】根据题意,对于函数分2段分析:当,由指数函数的性质分析可得,当,由导数与函数单调性的关系可得,在上恒成立,变形可得,再结合函数的单调性,分析可得,联立三个式子,分析可得答案.【详解】解:根据题意,函数在上单调递增,当,若为增函数,则,当,若为增函数,必有在上恒成立,变形可得:,又由,可得在上单调递减,则,若在上恒成立,则有,若函数在上单调递增,左边一段函数的最大值不能大于右边一段函数
12、的最小值,则需有,联立可得:.故选:D.【点睛】本题考查函数单调性的性质以及应用,注意分段函数单调性的性质.9B【解析】直接利用集合的基本运算求解即可【详解】解:全集,集合,则,故选:【点睛】本题考查集合的基本运算,属于基础题10D【解析】通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.11C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C12B【解析】试题分析:根据题意可得平地降雨量,故选B.考点:1.实际应用问题;2.圆台的体积.二
13、、填空题:本题共4小题,每小题5分,共20分。13【解析】计算正四面体的高,并计算该正四面体的体积,利用等体积法,可得结果.【详解】作平面,为的重心如图则,所以设正四面体内任意一点到四个面的距离之和为则故答案为:【点睛】本题考查类比推理的应用,还考查等体积法,考验理解能力以及计算能力,属基础题.14【解析】由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项【详解】由题意,展开式通项为,由得,常数项为故答案为:【点睛】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键15【解析】画出满足条件的平面区域,求出交点的坐标,由得,显然直线过时,最小,代入求
14、出的值即可【详解】作出不等式组所表示的可行域如下图所示:联立,解得,则点.由得,显然当直线过时,该直线轴上的截距最小,此时最小,解得.故答案为:【点睛】本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题16(1);(2).【解析】(1)以点为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,进而表示直线的方程,由直线与圆相切构建关系化简整理得,即可表示OA,OB,最后由三角形面积公式表示面积即可;(2)令,则,由辅助角公式和三角函数值域可求得t的取值范围,进而对原面积的函数用含t的表达式换元,再令进行换元,并构建新的函数,由二次函数性质即可求得最小值.【详解】解:(1)以点
15、为坐标原点建立如图所示的平面直角坐标系,则,在中,设,又,故,.所以直线的方程为,即.因为直线与圆相切,所以.因为点在直线的上方,所以,所以式可化为,解得.所以,.所以面积为.(2)令,则,且,所以,.令,所以在上单调递减.所以,当,即时,取得最大值,取最小值.答:当时,面积为最小,政府投资最低.【点睛】本题考查三角函数的实际应用,应优先结合实际建立合适的数学模型,再按模型求最值,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)x2=4y(2).【解析】试题解析:()设点P(x0,),由x2=2py(p0)得,y=,求导y=,因为直线PQ的斜率为1,所以=1且
16、x0-2=0,解得p=2,所以抛物线C1的方程为x2=4y()因为点P处的切线方程为:y-=(x-x0),即2x0 x-2py-x02=0, OQ的方程为y=-x根据切线与圆切,得d=r,即,化简得x04=4x02+4p2,由方程组,解得Q(,),所以|PQ|=1+k2|xP-xQ|=点F(0,)到切线PQ的距离是d=,所以S1=,S2=,而由x04=4x02+4p2知,4p2=x04-4x020,得|x0|2,所以=+12+1,当且仅当时取“=”号,即x02=4+2,此时,p=所以的最小值为2+1考点:求抛物线的方程,与抛物线有关的最值问题.18(1),证明见解析;(2)【解析】(1)首先利
17、用赋值法求出的值,进一步利用定义求出数列的通项公式;(2)首先利用叠乘法求出数列的通项公式,进一步利用数列的单调性和基本不等式的应用求出参数的范围【详解】(1)数列满足,其前项和为所以,则,所以猜想得:证明:由于,所以,则:(常数),所以数列是首项为1,公差为的等差数列所以,整理得(2)数列满足,所以,则,所以则,所以,所以,整理得,由于,所以,即【点睛】本题考查的知识要点:数列的通项公式的求法及应用,叠乘法的应用,函数的单调性在数列中的应用,基本不等式的应用,主要考察学生的运算能力和转换能力,属于中档题型19(1);(2)见解析.【解析】(1)当时,将所求不等式变形为,然后分、三段解不等式,
18、综合可得出原不等式的解集;(2)先由不等式的解集求得实数,可得出,将代数式变形为,将与相乘,展开后利用基本不等式可求得的最小值,进而可证得结论.【详解】(1)当时,不等式为,且.当时,由得,解得,此时;当时,由得,该不等式不成立,此时;当时,由得,解得,此时.综上所述,不等式的解集为;(2)由,得,即或,不等式的解集为,故,解得, ,当且仅当,时取等号,【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式,考查推理能力与计算能力,属于中等题.20(1),;(2),证明见解析【解析】(1)利用已知条件建立等量关系求出数列的通项公式(2)利用裂项相消法求出数列的和,进一步利用放缩法求出结论【详解】(1),得是公比为的等比数列,当时,数列的前项积为,则,两式相除得,得,又得,;(2),故.【点睛】本题考查的知识要点:数列的通项公式的求法及应用,数列的前项和的应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转换能力,属于中档题21()曲线的参数方程为:(为参数);的极坐标方程为;()16.【解析】(I)直接利用转换关系,把参数方程、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024保安服务合同(范本)公司保安合同范本
- 2024年丙丁双方关于购买房产合同标的的协议书
- 2024年简单货物运输合同格式
- 2024年度金融风险管理系统定制开发合同
- 2024合同补充协议
- 2024年协议离婚应当注意的要点
- 网吧转让合同范本
- 律师代理公司股票上市合同范本
- 2024日本留学租房合同签订须知
- 2024借款居间服务合同
- 2024江苏省沿海开发集团限公司招聘23人高频难、易错点500题模拟试题附带答案详解
- 2024年计算机二级WPS考试题库380题(含答案)
- 22G101三维彩色立体图集
- 大学生安全文化智慧树知到期末考试答案章节答案2024年中南大学
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- 人教版小学英语单词表(完整版)
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 国家开放大学《心理健康教育》形考任务1-9参考答案
- MOOC 法理学-西南政法大学 中国大学慕课答案
- 用友华表伙伴商务手册.
- 大学生健康人格与心理健康PPT课件
评论
0/150
提交评论