小学数学思想方法的梳理(统计思想)_第1页
小学数学思想方法的梳理(统计思想)_第2页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、小学数学思想方法的梳理(统计思想) 课程教材研究所 王永春八、统计思想1. 统计思想的概念。现实生活中有大量的数据需要分析和研究,如人口数量、物价指数、商品合格率、种子发芽率等等。有时需要对所有的数据进行全面调查,如我国为了掌握人口的真实情况,曾经进行过全国人口普查。一般情况下不可能也不需要考察所有对象,如物价指数、商品合格率等,就需要采取抽样调查的方法收集和分析数据,用样本来估计总体,从而进行合理的推断和决策,这就是统计的思想方法。在统计里主要有两种估计方法:一是用样本的频率分布估计总体的分布,二是用样本的数据特征(如平均数、中位数和众数)估计总体的数据特征。2. 统计思想的重要意义。在课程

2、标准实施前的小学数学中,统计图表的知识也是必学的内容,但受那个时代人们观念的局限,对统计的认识和教学主要限于统计知识和技能本身,并没有把统计与信息时代和市场经济社会很好地联系起来。当今社会,人们每天的日常工作和生活都会面对纷繁复杂的信息和数据,如何收集、整理和分析数据,学会运用数据说话,做出科学的推断和决策,是每一个公民必须具备的数学素养和思维方式。因此,使学生在义务教育阶段熟悉统计的思想方法,逐步形成统计观念,有助于运用随机的观点理解世界,形成科学的世界观和方法论。3. 统计思想的具体应用。在小学数学中,统计思想的应用大体上可分为两种:一是统计作为四大领域知识中的一类知识,安排了很多独立的单

3、元进行统计知识的教学;二是在学习了一些统计知识后,在其他领域知识的学习中,都不同程度地应用了统计知识,作为知识呈现的载体和解决问题的方法进行教学。因而,统计思想在小学数学中的应用是比较广泛的。小学数学中统计的知识点主要有:象形统计图、单式统计表、复式统计表、单式条形统计图、复式条形统计图、单式折线统计图、复式折线统计图、扇形统计图、平均数、中位数、众数,以及不恰当的数据及统计图表可能产生误导。这些知识作为学习统计的基础是必须掌握的,但更重要的是能够根据数据的特点和解决问题的需要选择合适的统计图表或者统计量来描述和分析数据、做出合理的预测和决策。4统计思想的教学。课程标准的颁布和实施,赋予了统计

4、更加丰富的内涵。教师要全面理解课程标准关于统计知识的内容和理念,在教学中要注意以下几点。第一,注重过程性目标的教学。让学生经历数据的收集、整理、描述、分析、推断和决策的过程。包括设计合适的调查表、选择合适的统计图表和统计量描述数据、科学地分析数据并做出合理的决策。统计的教学要改变以往注重统计知识和技能这种数学化的倾向,要让学生经历统计的全过程,把统计与生活密切联系起来,让学生学习活生生的统计,而不是仅仅回答枯燥乏味的纯数学问题。第二,认识统计对决策的作用,能从统计的角度思考与数据有关的问题。学会用数据说话,能使我们的思维更加理性,避免感性行事。从小学开始就要让学生认识统计对决策的重要作用,为将

5、来的进一步学习和走向社会培养良好的统计意识。如作为市场经济和信息化社会的公民,每个人无不与经济活动和投资理财打交道;如果能够根据影响经济运行的各种主要数据进行合理的分析和推断,做出正确的投资理财决策、使自己的资产不断保值和升值,对于每个公民意义重大。当然,统计推断往往是基于用样本来估计总体,属于合情推理,并不是一种必然的逻辑关系;因而决策有时是符合预期的,有时也可能不十分正确甚至有可能是错误的。如中国2004、2005、2006、2007年的全年国内生产总值比上一年分别增长9.5%、9.9%、10.7%、11.4%,根据这个变化趋势,预测2008年有可能增长12%;这种预测是一种简单的统计推断

6、,这仅仅是一种可能;换句话说,2008年如果没有增长那么快也是有可能的。实际上,2008年突发的全球金融危机影响了经济增长,2008年比上年只增长了9%。第三,能对给定数据的来源、收集和描述的方法,以及分析的结论进行合理的质疑。现实生活中的各种统计数据和信息纷繁复杂,权威部门发布的统计数据基本上是科学可信的,但是有些公司或者广告发布的数据可能存在偏差。有些数据不十分合理或者不够精细,从而影响人们的认识和决策,甚至给人们带来误导。学习了统计知识以后,尤其是作为未来的公民,应该能够从科学、全面、微观的角度分析数据,从而做出正确的判断和决策。如最近公布的2009年各地区单位职工年平均工资情况。很多人

7、认为自己没有这么高的收入,而平均工资为什么会这么高,因而就质疑统计结果。如果我们从统计的角度对数据的来源进行全面、细致的分析,把平均数和中位数结合起来,搞清楚数据的大致分布情况,就不会有疑问了。这个数据是一个平均数,是把各个单位(不包括个体户)的工资收入总额除以职工总数得出的平均数。如某市在统计的19个行业中,有10个行业的平均工资低于平均数,而且这10个行业的就业人数相对较多,平均工资最高的行业是最低行业的8倍还多。高收入行业的收入过高,极端值拉高了平均数,导致平均数大于中位数。实际上一半以上的人平均工资要低于平均数,所以很多人认为自己的收入“被增长”了。另外,在小学阶段,由于计算难度的制约

8、,解决一些统计问题时选定的样本容量往往较少,这时我们要注意这样的统计推断是否可信。如把一个班级50 人作为一个样本进行调查收集数据,进而对全年级甚至同龄人进行估计,要注意50人的数据是否具有代表性。如果调查50人的身高、体重、血型、鞋子号码、服装型号分布等等可能是合适的。如果调查50人出生的月份分布情况,以此来推断全年级甚至同龄人出生的月份,出现差错的可能性会大一些。因为一年有12个月,50人平均下来每月也就4到5人,容量太小代表性就差。第四,对有关概念应正确理解,应注重知识的应用,避免单纯的数据计算和概念判断。如平均数、中位数和众数的联系和区别,这三个统计量到底在什么条件下适用,一直困扰着很

9、多老师。另外,有些老师喜欢在一些概念上纠缠,而不是关注知识的应用和实际意义,如让学生找出下面一组数据的众数:75 84 84 89 89 92 92 96 98。这样的问题没有什么现实意义,不如给一组联系实际的数据,让学生去思考用什么量数作为该组数据一般水平的代表,更有意义。平均数、中位数和众数都是反映一组数据集中趋势的量数,代表一般水平。平均数能反映全体数据的信息,任何一个数据的改变都会引起平均数的改变,比较敏感,因而应用比较普遍;缺点是易受极端值的影响。日常生活和研究领域的统计数据,多数都选择平均数作为代表值。如我们国家和地方统计部门经常公布的人均产值、人均收入、物价指数等等,都是应用平均

10、数作为代表值。中位数处于中间水平,不受极端值的影响,运算简单,在一组数据中起分水岭的作用;缺点是不能反映全体数据的情况,可靠性较差。众数不受极端数据的影响,运算简单,当要找出适应多数需要的数值时,常用众数;缺点是不能反映全体数据的情况,可靠性较差。众数可能不唯一,甚至有时没有。这三个统计量有着各自的特点和适用的条件,可以根据研究和解决问题的需要来选择;与中位数和众数比较而言,平均数可以反映更多的样本数据全体的信息。然而它们三者并不是一种完全排斥的关系,特殊情况下这三个统计量或者其中的两个统计量都有可能成为一组数据一般水平的代表。如学生的考试成绩往往服从正态分布或者近似正态分布,那么这三个统计量

11、很可能相等或者非常接近;这时用三个统计量中的任何一个作为该数据一般水平的代表都是可以的。有时把平均数和中位数结合使用,会了解更多的信息。如某次数学考试全班49人平均分数为92分,小林考93分、排名第25,小明的成绩比小林高2分。可以发现中位数是93分,小明的成绩处于中上等水平,平均数低于中位数,说明可能有极端的低分数。案例1:一家公司2008年和2009年职工年工资情况如下表。职务总经理副总经理部门经理部门副经理普通员工人数12810792008年工资万元875422009年工资万元108.564.8 2.3这家公司2008年和2009年职工平均工资各是多少?这家公司对外宣称,2009年职工平

12、均工资比2008年增长17%以上,这种说法有不妥之处吗?分析:(1)2008和2009年职工平均工资分别为:(8+27+85104792)100=2.6(万元)(1028.586104.8792.3)=3.047(万元)(2)(3.047-2.6)2.617.2%,(2.3-2)2=15%。从全体职工平均工资角度看,2009年比上年增长确实超过17%。但是代表公司大多数的普通员工的平均工资低于平均数,增长率也低于平均增长率,普通员工与中高级管理人员的收入差距在逐年扩大。案例2:日本和中国2009年国内生产总值(GDP)大约分别是49660、49270亿美元,分别排名世界第二和第三。如果中国人口

13、总数按13.4 亿计算,日本人口总数大约是中国的9.3%。在参与统计的183个经济体中,人均GDP日本排在第17位,中国排在第101位,排在第92位的人均GDP为4059美元。比较中国和日本GDP的总量及人均GDP,并结合中位数分析,你能发现哪些信息?分析:从GDP总量上来说,中国已经排名世界第三,而且与排名第二位的日本非常接近,可以发现中国是世界经济大国。但是从平均数的角度看,日本人均GDP为39728美元,中国为3677美元,中国远落后于日本,而且低于中位数4059美元,说明我们的人均GDP处于中下水平,与中等水平相差大约10%。案例3:有关部门对一个社区的100个居民月度人均用水量进行了调查统计,数据如下表:用水量吨23456人数人82440 226(1)计算这组数据的平均数、中位数和众数。(2)什么数可以代表居民人均用水

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论