版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列的前n项和为,则A3B4C5D62中国古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”,主要指德育;“乐”,主要指美育;“射”和“御”,就是体育和劳动;“书”,指各种历史文化知识;“数”,指数学.某校国学社团开展“六艺”课程
2、讲座活动,每艺安排一节,连排六节,一天课程讲座排课有如下要求:“数”必须排在第三节,且“射”和“御”两门课程相邻排课,则“六艺”课程讲座不同的排课顺序共有( )A12种B24种C36种D48种3已知双曲线的左、右焦点分别为,点P是C的右支上一点,连接与y轴交于点M,若(O为坐标原点),则双曲线C的渐近线方程为( )ABCD4某工厂一年中各月份的收入、支出情况的统计如图所示,下列说法中错误的是( )A收入最高值与收入最低值的比是B结余最高的月份是月份C与月份的收入的变化率与至月份的收入的变化率相同D前个月的平均收入为万元5已知,其中是虚数单位,则对应的点的坐标为( )ABCD6随着人民生活水平的
3、提高,对城市空气质量的关注度也逐步增大,下图是某城市月至月的空气质量检测情况,图中一、二、三、四级是空气质量等级,一级空气质量最好,一级和二级都是质量合格天气,下面叙述不正确的是( )A1月至8月空气合格天数超过天的月份有个B第二季度与第一季度相比,空气达标天数的比重下降了C8月是空气质量最好的一个月D6月份的空气质量最差.7在菱形中,分别为,的中点,则( )ABC5D8从装有除颜色外完全相同的3个白球和个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为,已知,则ABCD9已知复数是纯虚数,其中是实数,则等于( )ABCD10函数的图象大致为( )ABCD11如图,抛物线:的焦点为,
4、过点的直线与抛物线交于,两点,若直线与以为圆心,线段(为坐标原点)长为半径的圆交于,两点,则关于值的说法正确的是( )A等于4B大于4C小于4D不确定12已知双曲线C:=1(a0,b0)的右焦点为F,过原点O作斜率为的直线交C的右支于点A,若|OA|=|OF|,则双曲线的离心率为( )ABC2D+1二、填空题:本题共4小题,每小题5分,共20分。13若函数的图像上存在点,满足约束条件,则实数的最大值为_14某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,再次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件
5、产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75;则第一次烧制后恰有一件产品合格的概率为_;经过前后两次烧制后,合格工艺品的件数为,则随机变量的期望为_.15在中,若,则的范围为_.16若,i为虚数单位,则正实数的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道将分成面积之比为的两部分(点D,E分别在边,上);再取的中点M,建造直道(如图).设,(单位:百米).(1)分别求,关
6、于x的函数关系式;(2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.18(12分)在四棱锥的底面中,平面,是的中点,且()求证:平面;()求二面角的余弦值;()线段上是否存在点,使得,若存在指出点的位置,若不存在请说明理由.19(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.20(12分)如图,四棱锥中,底面为直角梯形,为等边三角形,平面底面,为的中点. (1)求证:平面平面;(2)点在线段上,且,求平面与平面所成的锐二面角的余弦值.21(12分)小丽在同一城市开的2家店铺各有2名员工.节假日期间的某一天,每名员
7、工休假的概率都是,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店维持营业,否则该店就停业.(1)求发生调剂现象的概率;(2)设营业店铺数为X,求X的分布列和数学期望.22(10分)已知函数,函数().(1)讨论的单调性;(2)证明:当时,.(3)证明:当时,.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】方法一:设等差数列的公差为,则,解得,所以.故选C方法二:因为,所以,则.故选C2C【解析】根据“数”排在第三节,则“射”和“御”两门课程相邻有3类排法,再考虑两者的顺序,有种,剩余的
8、3门全排列,即可求解.【详解】由题意,“数”排在第三节,则“射”和“御”两门课程相邻时,可排在第1节和第2节或第4节和第5节或第5节和第6节,有3种,再考虑两者的顺序,有种,剩余的3门全排列,安排在剩下的3个位置,有种,所以“六艺”课程讲座不同的排课顺序共有种不同的排法.故选:C.【点睛】本题主要考查了排列、组合的应用,其中解答中认真审题,根据题设条件,先排列有限制条件的元素是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3C【解析】利用三角形与相似得,结合双曲线的定义求得的关系,从而求得双曲线的渐近线方程。【详解】设,由,与相似,所以,即,又因为,所以,所以,即,所以双曲线C的
9、渐近线方程为.故选:C.【点睛】本题考查双曲线几何性质、渐近线方程求解,考查数形结合思想,考查逻辑推理能力和运算求解能力。4D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误综上,故选5C【解析】利用复数相等的条件求得,则答案可求【详解】由,得,对应的点的坐标为,故选:【点睛】本题考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题6D【解析】由图表可知月空气质量合格天气只有天,月份的空气质量最差故本题答案选7B【解析】据题意以菱形对角线交点
10、为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.8B【解析】由题意知,由,知,由此能求出【详解】由题意知,解得,故选:B【点睛】本题考查离散型随机变量的方差的求法,解题时要认真审题,仔细解答,注意二项分布的灵活运用9A【解析】对复数进行化简,由于为纯虚数,则化简后的复数形式中,实部为0,得到的值,从而得到复数.【详解】
11、因为为纯虚数,所以,得所以.故选A项【点睛】本题考查复数的四则运算,纯虚数的概念,属于简单题.10A【解析】用偶函数的图象关于轴对称排除,用排除,用排除.故只能选.【详解】因为 ,所以函数为偶函数,图象关于轴对称,故可以排除;因为,故排除,因为由图象知,排除.故选:A【点睛】本题考查了根据函数的性质,辨析函数的图像,排除法,属于中档题.11A【解析】利用的坐标为,设直线的方程为,然后联立方程得,最后利用韦达定理求解即可【详解】据题意,得点的坐标为.设直线的方程为,点,的坐标分别为,.讨论:当时,;当时,据,得,所以,所以.【点睛】本题考查直线与抛物线的相交问题,解题核心在于联立直线与抛物线的方
12、程,属于基础题12B【解析】以为圆心,以为半径的圆的方程为,联立,可求出点,则,整理计算可得离心率.【详解】解:以为圆心,以为半径的圆的方程为,联立,取第一象限的解得,即,则,整理得,则(舍去),.故选:B.【点睛】本题考查双曲线离心率的求解,考查学生的计算能力,是中档题.二、填空题:本题共4小题,每小题5分,共20分。131【解析】由题知x0,且满足约束条件的图象为由图可知当与交于点B(2,1),当直线过B点时,m取得最大值为1. 点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行
13、比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.140.38 0.9 【解析】考虑恰有一件的三种情况直接计算得到概率,随机变量的可能取值为,计算得到概率,再计算数学期望得到答案.【详解】第一次烧制后恰有一件产品合格的概率为:.甲、乙、丙三件产品合格的概率分别为:,.故随机变量的可能取值为,故;.故.故答案为:0.38 ;0.9.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.15【解析】借助正切的和角公式可求得,即则通过降幂扩角公式和辅助角公式可化简,由,借助正弦型函数的图象和性质即可解得所求.【详解】,所以,.因为,所以,所以.故答
14、案为: .【点睛】本题考查了三角函数的化简,重点考查学生的计算能力,难度一般.16【解析】利用复数模的运算性质,即可得答案【详解】由已知可得:,解得故答案为:【点睛】本题考查复数模的运算性质,考查推理能力与计算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1),.,.(2)当百米时,两条直道的长度之和取得最小值百米.【解析】(1)由,可解得.方法一:再在中,利用余弦定理,可得关于x的函数关系式;在和中,利用余弦定理,可得关于x的函数关系式.方法二:在中,可得,则有,化简整理即得;同理,化简整理即得.(2)由(1)和基本不等式,计算即得.【详解】解:(1),
15、是边长为3的等边三角形,又,.由,得.法1:在中,由余弦定理,得.故直道长度关于x的函数关系式为,.在和中,由余弦定理,得因为M为的中点,所以.由,得,所以,所以.所以,直道长度关于x的函数关系式为,.法2:因为在中,所以.所以,直道长度关于x的函数关系式为,.在中,因为M为的中点,所以.所以.所以,直道长度关于x的函数关系式为,.(2)由(1)得,两条直道的长度之和为(当且仅当即时取“”).故当百米时,两条直道的长度之和取得最小值百米.【点睛】本题考查了余弦定理和基本不等式,第一问也可以利用三角形中的向量关系进行求解,属于中档题.18()详见解析;();()存在,点为线段的中点.【解析】()
16、连结,则四边形为平行四边形,得到证明.()建立如图所示坐标系,平面法向量为,平面的法向量,计算夹角得到答案.()设,计算,根据垂直关系得到答案.【详解】()连结,则四边形为平行四边形.平面.()平面,四边形为正方形.所以,两两垂直,建立如图所示坐标系,则,设平面法向量为,则,连结,可得,又所以,平面,平面的法向量,设二面角的平面角为,则.()线段上存在点使得,设,所以点为线段的中点.【点睛】本题考查了线面平行,二面角,根据垂直关系确定位置,意在考查学生的计算能力和空间想象能力.19(1),;(2),.【解析】(1)直接利用同角三角函数关系式的变换的应用求出结果(2)首先把函数的关系式变形成正弦
17、型函数,进一步利用正弦型函数的性质的应用求出结果【详解】(1)由题意得,(2)由,解得,所以对称轴为,.由,解得,所以单调递增区间为.,【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力,属于基础题型20(1)见解析(2)【解析】(1)根据等边三角形的性质证得,根据面面垂直的性质定理,证得底面,由此证得,结合证得平面,由此证得:平面平面.(2)建立空间直角坐标系,利用平面和平面的法向量,计算出平面与平面所成的锐二面角的余弦值.【详解】(1)证明:为等边三角形,为的中点,平面底面,平面底面,底面平面,又由题意可知为正方形,又,平面平面,
18、平面平面(2)如图建立空间直角坐标系,则,由已知,得,设平面的法向量为,则令,则,由(1)知平面的法向量可取为平面与平面所成的锐二面角的余弦值为.【点睛】本小题主要考查面面垂直的判定定理和性质定理,考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.21(1)(2)见解析,【解析】(1)根据题意设出事件,列出概率,运用公式求解;(2)由题得,X的所有可能取值为,根据(1)和变量对应的事件,可得变量对应的概率,即可得分布列和期望值.【详解】(1)记2家小店分别为A,B,A店有i人休假记为事件(,1,2),B店有i人,休假记为事件(,1,2),发生调剂现象的概率为P.则,.所以.答:发生调剂现象的概率为.(2)依题意,X的所有可能取值为0,1,2.则,.所以X的分布表为:X012P所以.【点睛】本题是一道考查概率和期望的常考题型.22(1)答案不唯一,具体见解析(2)证明见解析(3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿古诗学习课件
- 《光生伏特器》课件
- 大学生职业规划公共服务
- 适老智能家居系统功能性需求
- 两位数加减一位数综合练习试题
- 《理科班监督权威》课件
- 医疗行业职业道德规范
- 正常妊娠妇女的护理
- 市妇幼保健院终末住院病历质量评价用表
- 临床治疗诊疗流程规范
- 小学语文人教六年级上册“走近鲁迅”群文阅读课件
- 篮球场改造工程施工组织设计方案
- 小学生飞机知识科普课件
- 六年级上册数学课件-《比的化简》 (共14张PPT)北师大版(2014秋)
- DB11-T 2000-2022 建筑工程消防施工质量验收规范
- 生态学(第四章群落演替)课件
- 分拣作业流程图
- GB∕T 13610-2020 天然气的组成分析 气相色谱法
- 工商银行 最终
- 医疗机构管理条例(79张)课件
- 1.2集合间的基本关系 课件(共20张PPT)
评论
0/150
提交评论