版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若复数满足,则()ABCD2已知的部分图象如图所示,则的表达式是( )ABCD3已知全集,则集合的子集个数为( )ABCD4设等比数列的前项和为,则“”是“”的( )A充分不必要条件
2、B必要不充分条件C充分必要条件D既不充分也不必要条件5已知集合AxN|x28x,B2,3,6,C2,3,7,则( )A2,3,4,5B2,3,4,5,6C1,2,3,4,5,6D1,3,4,5,6,76聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,则按照以上规律,若具有“穿墙术”,则( )A48B63C99D1207在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测甲:我的成绩比乙高乙:丙的成绩比我和甲的都高丙:我的成绩比乙高成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到
3、低的次序为A甲、乙、丙B乙、甲、丙C丙、乙、甲D甲、丙、乙8设 ,则()A10B11C12D139若x,y满足约束条件且的最大值为,则a的取值范围是( )ABCD10已知三棱锥的所有顶点都在球的球面上,平面,若球的表面积为,则三棱锥的体积的最大值为( )ABCD11已知,则a,b,c的大小关系为( )ABCD12已知集合,若,则的最小值为( )A1B2C3D4二、填空题:本题共4小题,每小题5分,共20分。13在二项式的展开式中,的系数为_.14若,i为虚数单位,则正实数的值为_.15函数的图象在处的切线与直线互相垂直,则_16已知,记,则的展开式中各项系数和为_三、解答题:共70分。解答应写
4、出文字说明、证明过程或演算步骤。17(12分)已知是抛物线的焦点,点在轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于、两点,且.(1)求抛物线的方程;(2)直线与抛物线交于、两点,若,求点到直线的最大距离.18(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程以及曲线的直角坐标方程;(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.19(12分)已知(1)若的解集为,求的值;(2)若对任意,不等式恒成立,求实数的取值范围20(12分)已知函数.(1)求函数的单调
5、区间;(2)若,证明.21(12分)在直角坐标系中,点的坐标为,直线的参数方程为(为参数,为常数,且).以直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位,建立极坐标系,圆的极坐标方程为.设点在圆外.(1)求的取值范围.(2)设直线与圆相交于两点,若,求的值.22(10分)已知直线是曲线的切线.(1)求函数的解析式,(2)若,证明:对于任意,有且仅有一个零点.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】把已知等式变形,利用复数代数形式的除法运算化简,再由复数模的计算公式求解【详解】解:由,得,故
6、选C【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题2D【解析】由图象求出以及函数的最小正周期的值,利用周期公式可求得的值,然后将点的坐标代入函数的解析式,结合的取值范围求出的值,由此可得出函数的解析式.【详解】由图象可得,函数的最小正周期为,.将点代入函数的解析式得,得,则,因此,.故选:D.【点睛】本题考查利用图象求三角函数解析式,考查分析问题和解决问题的能力,属于中等题.3C【解析】先求B.再求,求得则子集个数可求【详解】由题=, 则集合,故其子集个数为故选C【点睛】此题考查了交、并、补集的混合运算及子集个数,熟练掌握各自的定义是解本题的关键,是基础题4C【解析】根据等
7、比数列的前项和公式,判断出正确选项.【详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.5C【解析】根据集合的并集、补集的概念,可得结果.【详解】集合AxN|x28xxN|0 x8,所以集合A1,2,3,4,5,6,7B2,3,6,C2,3,7,故1,4,5,6,所以1,2,3,4,5,6.故选:C.【点睛】本题考查的是集合并集,补集的概念,属基础题.6C【解析】观察规律得根号内分母为分子的平方减1,从而求出n.【详解】解:观察各式发现规律,根号内分母为分子的平方减1所以故选:C.【点
8、睛】本题考查了归纳推理,发现总结各式规律是关键,属于基础题.7A【解析】利用逐一验证的方法进行求解.【详解】若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲,乙成绩都高,即乙预测正确,不符合题意,故选A【点睛】本题将数学知识与时政结合,主要考查推理判断能力题目有一定难度,注重了基础知识、逻辑推理能力的考查8B【解析】根据题中给出的分段函数,只要将问题转化为求x10内的函数值,代入即可求出其值【详解】f(x),f(5)ff(1)f(9)f
9、f(15)f(13)1故选:B【点睛】本题主要考查了分段函数中求函数的值,属于基础题9A【解析】画出约束条件的可行域,利用目标函数的最值,判断a的范围即可【详解】作出约束条件表示的可行域,如图所示.因为的最大值为,所以在点处取得最大值,则,即.故选:A【点睛】本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键10B【解析】由题意画出图形,设球0得半径为R,AB=x, AC=y,由球0的表面积为20,可得R2=5,再求出三角形A BC外接圆的半径,利用余弦定理及基本不等式求xy的最大值,代入棱锥体积公式得答案.【详解】设球的半径为,由,得如图:设三角形的外心为,连接,可得
10、,则在中,由正弦定理可得:,即,由余弦定理可得,则三棱锥的体积的最大值为故选:【点睛】本题考查三棱锥的外接球、三棱锥的侧面积、体积,基本不等式等基础知识,考查空间想象能力、逻辑思维能力、运算求解能力,考查数学转化思想方法与数形结合的解题思想方法,是中档题11D【解析】与中间值1比较,可用换底公式化为同底数对数,再比较大小【详解】,又,即,故选:D.【点睛】本题考查幂和对数的大小比较,解题时能化为同底的化为同底数幂比较,或化为同底数对数比较,若是不同类型的数,可借助中间值如0,1等比较12B【解析】解出,分别代入选项中 的值进行验证.【详解】解:,.当 时,,此时不成立.当 时,,此时成立,符合
11、题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.二、填空题:本题共4小题,每小题5分,共20分。1360【解析】直接利用二项式定理计算得到答案.【详解】二项式的展开式通项为:,取,则的系数为.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.14【解析】利用复数模的运算性质,即可得答案【详解】由已知可得:,解得故答案为:【点睛】本题考查复数模的运算性质,考查推理能力与计算能力,属于基础题151.【解析】求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可【详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率 本
12、题正确结果:【点睛】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键16【解析】根据定积分的计算,得到,令,求得,即可得到答案【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2).【解析】(1)求得点的坐标,可得出直线的方程,与抛物线的方程联立,结合求出正实数的值,进而可得出抛物线的方程;(2)设点,设的方程为
13、,将直线的方程与抛物线的方程联立,列出韦达定理,结合求得的值,可得出直线所过定点的坐标,由此可得出点到直线的最大距离.【详解】(1)易知点,又,所以点,则直线的方程为.联立,解得或,所以.故抛物线的方程为;(2)设的方程为,联立有,设点,则,所以.所以,解得.所以直线的方程为,恒过点.又点,故当直线与轴垂直时,点到直线的最大距离为.【点睛】本题考查抛物线方程的求解,同时也考查了抛物线中最值问题的求解,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题.18(1)的极坐标方程为,的直角坐标方程为(2)【解析】(1)先把曲线的参数方程消参后,转化为普通方程,再利用 求得极坐标方程.将,化为
14、,再利用 求得曲线的普通方程.(2)设直线的极角,代入,得,将代入,得,由,得,即,从而求得,从而求得,再利用求解.【详解】(1)依题意,曲线,即,故,即.因为,故,即,即.(2)将代入,得,将代入,得,由,得,得,解得,则.又,故,故的面积.【点睛】本题考查极坐标方程与直角坐标方程、参数方程与普通方程的转化、极坐标的几何意义,还考查推理论证能力以及数形结合思想,属于中档题.19(1);(2)【解析】(1)利用两边平方法解含有绝对值的不等式,再根据根与系数的关系求出的值;(2)利用绝对值不等式求出的最小值,把不等式化为只含有的不等式,求出不等式解集即可【详解】(1)不等式,即两边平方整理得由题
15、意知和是方程的两个实数根即,解得(2)因为所以要使不等式恒成立,只需当时,解得,即;当时,解得,即;综上所述,的取值范围是【点睛】本题考查了含有绝对值的不等式解法与应用问题,也考查了分类讨论思想,是中档题20(1)单调递减区间为,无单调递增区间(2)证明见解析【解析】(1)求导,根据导数的正负判断单调性,(2)整理,化简为,令,求的单调性,以及,即证.【详解】解:(1)函数定义域为,则,令,则,当,单调递减;当,单调递增;故,故函数的单调递减区间为,无单调递增区间.(2)证明,即为,因为,即证,令,则,令,则,当时,所以在上单调递减,则,则在上恒成立,所以在上单调递减,所以要证原不等式成立,只
16、需证当时,令,可知对于恒成立,即,即,故,即证,故原不等式得证.【点睛】本题考查利用导数研究函数的单调性,利用导数证明不等式,函数的最值问题,属于中档题21(1)(2)【解析】(1)首先将曲线化为直角坐标方程,由点在圆外,则解得即可;(2)将直线的参数方程代入圆的普通方程,设、对应的参数分别为,列出韦达定理,由及在圆的上方,得,即即可解得;【详解】解:(1)曲线的直角坐标方程为.由点在圆外,得点的坐标为,结合,解得.故的取值范围是.(2)由直线的参数方程,得直线过点,倾斜角为,将直线的参数方程代入,并整理得,其中.设、对应的参数分别为,则,.由及在圆的上方,得,即,代入,得,消去,得,结合,解得.故的值是.【点睛】本题考查极坐标方程化为直角坐标方程,直线的参数方程的几何意义的应用,属于中档题.22(1)(2)证明见解析【解析】(1)对函数求导,并设切点,利用点既在曲线上、又在切线上,列出方程组,解得,即可得答案;(2)当x充分小时,当x充分大时,可得至少有一个零点. 再证明零点的唯一性,即对函数求导得,对分和两种情况讨论,即可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 感恩节讲话稿集合15篇
- 师德标兵先进事迹材料集合15篇
- 年度考核个人述职报告15篇
- 抖音全课程培训
- 房产基础知识培训
- 企业安全知识竞赛
- 提升资金管理效率
- 2024年妇联业务知识
- 幸福终点站观后感10篇
- (高清版)DB21∕T 3298-2020 特种设备技术档案管理规范
- 江苏省苏州市2024-2025学年高三上学期1月期末生物试题(有答案)
- 销售与销售目标管理制度
- 2025年第一次工地开工会议主要议程开工大吉模板
- 第16课抗日战争课件-人教版高中历史必修一
- 对口升学语文模拟试卷(9)-江西省(解析版)
- 糖尿病高渗昏迷指南
- 壁垒加筑未来可期:2024年短保面包行业白皮书
- 环保局社会管理创新方案市环保局督察环保工作方案
- 2024至2030年中国水质监测系统行业市场调查分析及产业前景规划报告
- 运动技能学习
- 单侧双通道内镜下腰椎间盘摘除术手术护理配合1
评论
0/150
提交评论