版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1双曲线的渐近线方程为( )ABCD2设,点,设对一切都有不等式 成立,则正整数的最小值为( )ABCD3若集合,则( )ABCD4已知等差数列的前n项和为,且,若(,且),则i的取值集合是( )ABCD5已知集合,集合,若,则( )ABCD6已知正三棱锥的所有顶点都在球的球面上,其底面边长为4,、分别为侧棱,的中点.若在三棱锥内,且三棱锥的体积是三棱锥体积的4倍,则此外接球的体积与三棱锥体积的比值为( )ABCD7已知等差数列的前项和为,若,则数列的公差为( )ABCD8设集合,则
3、( )ABCD9某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为( )ABCD10某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体中最长的棱长为( )ABC1D11甲乙丙丁四人中,甲说:我年纪最大,乙说:我年纪最大,丙说:乙年纪最大,丁说:我不是年纪最大的,若这四人中只有一个人说的是真话,则年纪最大的是( )A甲B乙C丙D丁12已知双曲线:的焦点为,且上点满足,则双曲线的离心率为ABCD5二、填空题:本题共4小题,每小题5分,共20分。13将含有甲、乙、丙的6人平均分成
4、两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料,则甲、乙至少一人参加指挥交通且甲、丙不在同一个组的概率为_.14在平面直角坐标系中,已知点,若圆上有且仅有一对点,使得的面积是的面积的2倍,则的值为_.15若函数为奇函数,则_.16我国古代数学名著九章算术对立体几何有深入的研究,从其中一些数学用语可见,譬如“憋臑”意指四个面都是直角三角形的三棱锥.某“憋臑”的三视图(图中网格纸上每个小正方形的边长为1)如图所示,已知几何体高为,则该几何体外接球的表面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)若,求不等式的解集;(2)若“
5、,”为假命题,求的取值范围.18(12分)已知函数(1)若曲线在处的切线为,试求实数,的值;(2)当时,若有两个极值点,且,若不等式恒成立,试求实数m的取值范围19(12分)已知数列的前项和为,且点在函数的图像上;(1)求数列的通项公式;(2)设数列满足:,求的通项公式;(3)在第(2)问的条件下,若对于任意的,不等式恒成立,求实数的取值范围;20(12分)如图,在中,点在上,.(1)求的值;(2)若,求的长.21(12分)设的内角、的对边长分别为、.设为的面积,满足.(1)求;(2)若,求的最大值.22(10分)如图所示,四棱柱中,底面为梯形,.(1)求证:;(2)若平面平面,求二面角的余弦
6、值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】将双曲线方程化为标准方程为,其渐近线方程为,化简整理即得渐近线方程.【详解】双曲线得,则其渐近线方程为,整理得.故选:A【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.2A【解析】先求得,再求得左边的范围,只需,利用单调性解得t的范围.【详解】由题意知sin,随n的增大而增大,,,即,又f(t)=在t上单增,f(2)= -10,正整数的最小值为3.【点睛】本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化思想,属于中档题.3B【
7、解析】根据正弦函数的性质可得集合A,由集合性质表示形式即可求得,进而可知满足.【详解】依题意,;而,故,则.故选:B.【点睛】本题考查了集合关系的判断与应用,集合的包含关系与补集关系的应用,属于中档题.4C【解析】首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,解得,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.5A【解析】根据或,验证交集后求得的值.【详解】因为,所以或.当时,不符合题意,当时,.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题.6D【解析】如图,平面截球所得截面的图形为圆
8、面,计算,由勾股定理解得,此外接球的体积为,三棱锥体积为,得到答案.【详解】如图,平面截球所得截面的图形为圆面.正三棱锥中,过作底面的垂线,垂足为,与平面交点记为,连接、.依题意,所以,设球的半径为,在中,由勾股定理:,解得,此外接球的体积为,由于平面平面,所以平面,球心到平面的距离为,则,所以三棱锥体积为,所以此外接球的体积与三棱锥体积比值为.故选:D.【点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.7D【解析】根据等差数列公式直接计算得到答案.【详解】依题意,故,故,故,故选:D【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.8D【
9、解析】根据题意,求出集合A,进而求出集合和,分析选项即可得到答案.【详解】根据题意,则故选:D【点睛】此题考查集合的交并集运算,属于简单题目,9A【解析】由折线图找出水、电、交通开支占总开支的比例,再计算出水费开支占水、电、交通开支的比例,相乘即可求出水费开支占总开支的百分比.【详解】水费开支占总开支的百分比为.故选:A【点睛】本题考查折线图与柱形图,属于基础题.10B【解析】首先由三视图还原几何体,进一步求出几何体的棱长【详解】解:根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为故选:B【点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题11C【解析】分别假
10、设甲乙丙丁说的是真话,结合其他人的说法,看是否只有一个说的是真话,即可求得年纪最大者,即可求得答案.【详解】假设甲说的是真话,则年纪最大的是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,年纪最大的不是甲;假设乙说的是真话,则年纪最大的是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,年纪最大的也不是乙;假设丙说的是真话,则年纪最大的是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,年纪最大的也不是乙;假设丁说的是真话,则年纪最大的不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是年
11、纪最大的,同时乙也说谎,说明乙也不是年纪最大的,年纪最大的只有一人,所以只有丙才是年纪最大的,故假设成立,年纪最大的是丙.综上所述,年纪最大的是丙故选:C.【点睛】本题考查合情推理,解题时可从一种情形出发,推理出矛盾的结论,说明这种情形不会发生,考查了分析能力和推理能力,属于中档题.12D【解析】根据双曲线定义可以直接求出,利用勾股定理可以求出,最后求出离心率.【详解】依题意得,因此该双曲线的离心率.【点睛】本题考查了双曲线定义及双曲线的离心率,考查了运算能力.二、填空题:本题共4小题,每小题5分,共20分。13【解析】先求出总的基本事件数,再求出甲、乙至少一人参加指挥交通且甲、丙不在同一组的
12、基本事件数,然后根据古典概型求解【详解】6人平均分成两组参加“文明交通”志愿者活动,其中一组指挥交通,一组分发宣传资料的基本事件总数共有个,甲、乙至少一人参加指挥交通且甲、丙不在同一组的基本事件个数有:个,所以甲、乙至少一人参加指挥交通且甲、丙不在同一组的概率为.故答案为:【点睛】本题主要考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是中档题.14【解析】写出所在直线方程,求出圆心到直线的距离,结合题意可得关于的等式,求解得答案【详解】解:直线的方程为,即圆的圆心到直线的距离,由的面积是的面积的2倍的点,有且仅有一对,可得点到的距离是点到直线的距离的2倍,可得过圆的圆心,
13、如图:由,解得故答案为:【点睛】本题考查直线和圆的位置关系以及点到直线的距离公式应用,考查数形结合的解题思想方法,属于中档题15-2【解析】由是定义在上的奇函数,可知对任意的,都成立,代入函数式可求得的值.【详解】由题意,的定义域为,是奇函数,则,即对任意的,都成立,故,整理得,解得.故答案为:.【点睛】本题考查奇函数性质的应用,考查学生的计算求解能力,属于基础题.16【解析】三视图还原如下图:,由于每个面是直角,显然外接球球心O在AC的中点.所以,填。【点睛】三视图还原,当出现三个尖点在一个位置时,我们常用“揪尖法”。外接球球心到各个顶点的距离相等,而直角三角形斜边上的中点到各顶点的距离相等
14、,所以本题的球心为AC中点。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)当时,将函数写成分段函数,即可求得不等式的解集.(2)根据原命题是假命题,这命题的否定为真命题,即“,”为真命题,只需满足即可.【详解】解:(1)当时,由,得.故不等式的解集为.(2)因为“,”为假命题,所以“,”为真命题,所以.因为,所以,则,所以,即,解得,即的取值范围为.【点睛】本题考查绝对值不等式的解法,以及绝对值三角不等式,属于基础题.18(1);(2)【解析】(1)根据题意,求得的值,根据切点在切线上以及斜率等于,构造方程组求得的值;(2)函数有两个极值点,等价于
15、方程的两个正根,不等式恒成立,等价于恒成立,令,求出导数,判断单调性,即可得到的范围,即的范围.【详解】(1)由题可知,联立可得(2)当时,有两个极值点,且,是方程的两个正根,不等式恒成立,即恒成立,由,得,令,在上是减函数,故【点睛】该题考查的是有关导数的问题,涉及到的知识点有导数的几何意义,函数的极值点的个数,构造新函数,应用导数研究函数的值域得到参数的取值范围,属于较难题目.19(1)(2)当n为偶数时,;当n为奇数时,.(3)【解析】(1)根据,讨论与两种情况,即可求得数列的通项公式;(2)由(1)利用递推公式及累加法,即可求得当n为奇数或偶数时的通项公式.也可利用数学归纳法,先猜想出
16、通项公式,再用数学归纳法证明.(3)分类讨论,当n为奇数或偶数时,分别求得的最大值,即可求得的取值范围.【详解】(1)由题意可知,.当时,当时,也满足上式.所以.(2)解法一:由(1)可知,即.当时,当时,所以,当时,当时,所以,当时,n为偶数当时,n为偶数所以以上个式子相加,得.又,所以当n为偶数时,.同理,当n为奇数时,所以,当n为奇数时,.解法二:猜测:当n为奇数时,.猜测:当n为偶数时,.以下用数学归纳法证明:,命题成立;假设当时,命题成立;当n为奇数时,当时,n为偶数,由得故,时,命题也成立.综上可知, 当n为奇数时同理,当n为偶数时,命题仍成立.(3)由(2)可知.当n为偶数时,所
17、以随n的增大而减小从而当n为偶数时,的最大值是.当n为奇数时,所以随n的增大而增大,且.综上,的最大值是1.因此,若对于任意的,不等式恒成立,只需,故实数的取值范围是.【点睛】本题考查了累加法求数列通项公式的应用,分类讨论奇偶项的通项公式及求和方法,数学归纳法证明数列的应用,数列的单调性及参数的取值范围,属于难题.20 (1) ;(2).【解析】(1)由两角差的正弦公式计算;(2)由正弦定理求得,再由余弦定理求得【详解】(1)因为,所以.因为,所以,所以.(2)在中,由,得,在中,由余弦定理可得,所以.【点睛】本题考查两角差的正弦公式,考查正弦定理和余弦定理,属于中档题21 (1);(2).【
18、解析】(1)根据条件形式选择,然后利用余弦定理和正弦定理化简,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分别用角的三角函数值表示出,即可得到,再利用三角恒等变换,化简为,即可求出最大值【详解】(1),即,变形得:,整理得:,又,;(2),由正弦定理知,当且仅当时取最大值故的最大值为.【点睛】本题主要考查正弦定理,余弦定理,三角形面积公式的应用,以及利用三角恒等变换求函数的最值,意在考查学生的转化能力和数学运算能力,属于基础题22(1)证明见解析(2)【解析】(1)取中点为,连接,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.(2)以为原点,为,轴建立空间直角坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程建设项目合同纠纷处理协议2篇
- 弱电工程定期检修合同2篇
- 二零二四年度零售店铺形象统一装修合同2篇
- 汕头保障房租赁合同期限规定(2024版)9篇
- 二手商品房买卖合同2024年度权益保障2篇
- 2024年度汽车销售融资合同3篇
- 2024年砌块订购与交付条款3篇
- 2024年度砂石场原料供应与价格变动合同2篇
- 2024年短期租赁车辆确认单2篇
- 二零二四年度文化艺术节承办合同:主办方与承办方3篇
- 2024年度品牌方与带货主播合作推广特定商品的合同范本
- 声带麻痹治疗及护理
- 《精装修成品保护》课件
- 【初中地理】丰富多彩的世界文化-2024-2025学年七年级地理上册同步课件(湘教版2024)
- 小学合唱团活动评估与改进方案
- 2024二十届三中全会知识竞赛题库及答案
- 成人重症患者人工气道湿化护理专家共识 解读
- 商业伦理与企业社会责任(山东财经大学)智慧树知到期末考试答案章节答案2024年山东财经大学
- 成为一名心理咨询师的职业规划
- 滚柱式单向超越离合器的尺寸系列
- 2022高考物理微专题19 动力学中的图像问题
评论
0/150
提交评论