全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第四教时教材:极值定理目的:要求学生在掌握平均不等式的基础上进而掌握极值定理,并学会初步应用。过程:复习:算术平均数与几何平均数定义,平均不等式若,设 求证: 加权平均;算术平均;几何平均;调和平均证:即:(俗称幂平均不等式)由平均不等式即:综上所述:例一、若 求证证:由幂平均不等式: 极值定理 已知都是正数,求证:1 如果积是定值,那么当时和有最小值2 如果和是定值,那么当时积有最大值证: 1当 (定值)时, 上式当时取“=” 当时有2当 (定值)时, 上式当时取“=” 当时有注意强调:1最值的含义(“”取最小值,“”取最大值) 2用极值定理求最值的三个必要条件:一“正”、二“定”、三“相等”例题1证明下列各题: 证: 于是若上题改成,结果将如何?解: 于是从而若 则解:若则显然有若异号或一个为0则 2求函数的最大值求函数的最大值解: 当即时 即时 当时 3若,则为何值时有最小值,最小值为几?解: = 当且仅当即时小结:1四大平均值之间的关系及其证明 2极值定理及三要素作业:P12 练习3、4 习题6.2 4、5、6补充:下列函数中取何值时,函数取得最大值或最小值,最值是多少?1 时2 3时 高考试题库w
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 利用主题班会增强班级凝聚力计划
- 酒店员工薪酬管理总结
- 纺织行业生产作业安全总结
- 七年级生物下册 1.1人类的起源和发展 人教新课标版课件
- 2025年全球及中国智慧康养平台行业头部企业市场占有率及排名调研报告
- 2025-2030全球鱼塘净水器行业调研及趋势分析报告
- 2025-2030全球插画设计行业调研及趋势分析报告
- 2025-2030全球绳状海藻酸盐敷料行业调研及趋势分析报告
- 2025年全球及中国后装载机卡车行业头部企业市场占有率及排名调研报告
- 2025年全球及中国翻新SSD和HDD行业头部企业市场占有率及排名调研报告
- 《系统解剖学》期末考试复习题库大全-下(多选题汇总)
- 厦门弘爱医院硼中子俘获治疗系统项目环境影响报告
- 《中国高考评价体系》解读(化学学科)
- 企业人员测评理论与方法
- 你好法语第七课课件
- 图形创意(高职艺术设计类)PPT完整全套教学课件
- 环境空气颗粒物(PM10、PM2.5)自动监测手工比对核查技术规范
- 水上水下作业应急预案
- Jane-Eyre简爱英文课件
- (小学)人教版一年级下册数学《认识钟表》课件
- 2022年营口市大学生专考专招考试真题及答案
评论
0/150
提交评论