版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、押第19题 立体几何对于立体几何的解答题,在高考中常借助柱、锥体考查线面、平行与垂直,考查利用空间向量求二面角、线面角、线线角的大小,考查利用空间向量探索存在性问题及位置关系等,难度中等偏上1用向量法求异面直线所成的角(1)建立空间直角坐标系;(2)求出两条直线的方向向量;(3)代入公式求解,一般地,异面直线AC,BD的夹角的余弦值为.2用向量法求直线与平面所成的角(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角3用向量法求二面角求二面角最常用的
2、方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角4平面所成的二面角为,则,如图,AB,CD是二面角l的两个面内与棱l垂直的直线,则二面角的大小如图,分别是二面角l的两个半平面,的法向量,则二面角的大小满足|cos|,二面角的平面角大小是向量n1与n2的夹角(或其补角)1(2021湖南高考真题)如图,四棱锥中,底面ABCD是矩形,平面ABCD,E为PD的中点.(1)证明:平面ACE;(2)设,直线PB与平面ABCD所成的角为,求四棱锥的体积.2(2021天津高考真题)如图,在棱长为2的正方体中,E为棱BC
3、的中点,F为棱CD的中点(I)求证:平面;(II)求直线与平面所成角的正弦值(III)求二面角的正弦值3(2021浙江高考真题)如图,在四棱锥中,底面是平行四边形,M,N分别为的中点,.(1)证明:;(2)求直线与平面所成角的正弦值.4(2021北京高考真题)如图:在正方体中,为中点,与平面交于点(1)求证:为的中点;(2)点是棱上一点,且二面角的余弦值为,求的值5(2021全国高考真题)在四棱锥中,底面是正方形,若(1)证明:平面平面;(2)求二面角的平面角的余弦值1(2022河北秦皇岛二模)如图,在四棱锥中,.(1)证明:平面.(2)若为的中点,求二面角的大小.2(2022湖南永州三模)如
4、图,在三棱柱中,.(1)求证:;(2)若,点满足,求二面角的余弦值.3(2022江苏南京市第一中学三模)在正三棱柱中,D为中点,E为上一点(1)求四棱锥的体积;(2)若,求三棱锥的体积4(2022广东汕头二模)如图所示,C为半圆锥顶点,O为圆锥底面圆心,BD为底面直径,A为弧BD中点是边长为2的等边三角形,弦AD上点E使得二面角的大小为30,且(1)求t的值;(2)对于平面ACD内的动点P总有平面BEC,请指出P的轨迹,并说明该轨迹上任意点P都使得平面BEC的理由5(2022福建模拟预测)如图,在四棱锥中,四边形是菱形,.(1)证明:平面平面;(2)若二面角的余弦值为,求二面角的正弦值.(限时:30分钟)1如图(1),平面四边形中,将沿边折起如图(2),使_,点,分别为,中点在题目横线上选择下述其中一个条件,然后解答此题为四面体外接球的直径平面平面(1)判断直线与平面的位置关系,并说明理由;(2)求二面角的正弦值2如图,在三棱锥中,是边长为3的等边三角形,平面,点、分别为、的中点,点为线段上一点,且平面.(1)求证:;(2)求平面与平面所成角的正弦值.3如图(1),平面四边形中,将沿边折起如图(2),使_,点,分别为,中点在题目横线上选择下述其中一个条件,然后解答此题为四面体外接球的直径平面平面(1)判断直线与平面的位置关系,并说明理由;(2)求三棱锥的体积4如图,在四棱锥中,平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《绵阳求职招聘技巧》课件
- 2020-2021学年辽宁省沈阳市郊联体高一下学期期末考试历史试题
- 小学一年级10以内数字的分与合
- 小学数学新人教版一年级下册20以内口算练习题大全
- 小学三年级数学三位数加减法口算题
- 《汽车行业概述》课件
- 《运输与包装》课件
- 吉他行业客服工作总结用心服务打造音乐快乐
- 《光纤通信基础知识》课件
- 酒店招聘与人才引进策略
- 2024年江苏省淮安技师学院长期招聘高技能人才3人高频考题难、易错点模拟试题(共500题)附带答案详解
- 应急救援员五级理论考试题库含答案
- 2024年导游服务技能大赛《导游综合知识测试》题库及答案
- 高中化学实验开展情况的调查问卷教师版
- 期末全真模拟测试卷2(试题)2024-2025学年二年级上册数学苏教版
- 《声声慢(寻寻觅觅)》课件 统编版高中语文必修上册
- 初中物理-:八年级上学期竞赛题
- 生物治疗与再生医疗应用
- 2024年1月广东省高中学业水平考试物理试题(附答案)
- 帕金森患者生活质量问卷(PDQ-39)
- 汽车电器DFMEA-车载终端
评论
0/150
提交评论