




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 一解答(jid)题(共30小题)1如图,在ABC中,DEBC,EFAB,求证(qizhng):ADEEFC考点:相似三角形的判定;平行线的性质。分析:根据平行线的性质可知AED=C,A=FEC,根据相似三角形的判定定理可知ADEEFC解答:证明:DEBC,DEFC,AED=C又EFAB,EFAD,A=FECADEEFC点评:本题考查的是平行线的性质及相似三角形的判定定理2如图,梯形(txng)ABCD中,ABCD,点F在BC上,连DF与AB的延长线交于点G(1)求证:CDFBGF;(2)当点F是BC的中点时,过F作EFCD交AD于点E,若AB=6cm,EF=4cm,求CD的长考点:相似三角形
2、的判定;三角形中位线定理;梯形。菁优网版权所有专题:几何综合题。分析:(1)利用平行线的性质可证明CDFBGF(2)根据点F是BC的中点这一条件,可得CDFBGF,则CD=BG,只要求出BG的长即可解题解答:(1)证明:梯形ABCD,ABCD,CDF=FGB,DCF=GBF,(2分)CDFBGF(3分)(2)解:由(1)CDFBGF,又F是BC的中点,BF=FC,CDFBGF,DF=GF,CD=BG,(6分)ABDCEF,F为BC中点,E为AD中点,EF是DAG的中位线,2EF=AG=AB+BGBG=2EFAB=246=2,CD=BG=2cm(8分)点评:本题主要考查了相似三角形的判定定理及性
3、质,全等三角形的判定及线段的等量代换,比较复杂3如图,点D,E在BC上,且FDAB,FEAC求证:ABCFDE分析:由FDAB,FEAC,可知B=FDE,C=FED,根据三角形相似的判定定理可知:ABCFDE解答:证明:FDAB,FEAC,B=FDE,C=FED,ABCFDE点评:本题很简单,考查的是相似三角形的判定定理:(1)如果两个三角形的两个角对应相等,那么这两个三角形相似;(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似;(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,则这两个三角形相似4如图,已知E是矩形ABCD的边CD上
4、一点,BFAE于F,试说明:ABFEAD解答:证明:矩形ABCD中,ABCD,D=90,(2分)BAF=AED(4分)BFAE,AFB=90AFB=D(5分)ABFEAD(6分)点评:考查相似三角形的判定定理,关键是找准对应的角5已知:如图所示,在ABC和ADE中,AB=AC,AD=AE,BAC=DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点(1)求证:BE=CD;AMN是等腰三角形;(2)在图的基础上,将ADE绕点A按顺时针方向旋转180,其他条件不变,得到图所示的图形(txng)请直接写出(1)中的两个结论是否仍然成立;(3)在(2)的条件下,请你在图中延
5、长(ynchng)ED交线段BC于点P求证:PBDAMN考点:相似三角形的判定;全等三角形的判定;等腰三角形的判定;旋转的性质。菁优网版权所有专题:几何综合题。分析:(1)因为BAC=DAE,所以BAE=CAD,又因为AB=AC,AD=AE,利用SAS可证出BAECAD,可知BE、CD是对应边,根据全等三角形对应边上的中线相等,可证AMN是等腰三角形(2)利用(1)中的证明方法仍然可以得出(1)中的结论,思路不变(3)先证出ABMACN(SAS),可得出CAN=BAM,所以BAC=MAN(等角加等角和相等),又BAC=DAE,所以MAN=DAE=BAC,所以AMN,ADE和ABC都是顶角相等的
6、等腰三角形,所以PBD=AMN,所以PBDAMN(两个角对应相等,两三角形相似)解答:(1)证明:BAC=DAE,BAE=CAD,AB=AC,AD=AE,ABEACD,BE=CD由ABEACD,得ABE=ACD,BE=CD,M、N分别是BE,CD的中点,BM=CN又AB=AC,ABMACNAM=AN,即AMN为等腰三角形(2)解:(1)中的两个结论仍然成立(3)证明:在图中正确画出线段PD,由(1)同理可证ABMACN,CAN=BAMBAC=MAN又BAC=DAE,MAN=DAE=BACAMN,ADE和ABC都是顶角相等的等腰三角形PBD和AMN都为顶角相等的等腰三角形,PBD=AMN,PDB
7、=ANM,PBDAMN点评:本题利用了全等三角形的判定和性质,以及等腰三角形一个顶角相等,则底角相等的性质,还有相似三角形的判定(两个角对应相等的两个三角形相似)6如图,E是ABCD的边BA延长线上一点,连接EC,交AD于点F在不添加辅助线的情况下,请你写出图中所有的相似三角形,并任选一对(y du)相似三角形给予证明分析:根据平行线的性质和两角对应相等的两个三角形相似这一判定定理可证明图中相似三角形有:AEFBEC;AEFDCF;BECDCF解答:解:相似三角形有AEFBEC;AEFDCF;BECDCF(3分)如:AEFBEC在ABCD中,ADBC,1=B,2=3(6分)AEFBEC(7分)
8、点评:考查了平行线的性质及相似三角形的判定定理8如图,已知矩形ABCD的边长AB=3cm,BC=6cm某一时刻,动点M从A点出发沿AB方向以1cm/s的速度向B点匀速运动;同时,动点N从D点出发沿DA方向以2cm/s的速度向A点匀速运动,问:(1)经过多少时间,AMN的面积等于矩形ABCD面积的?(2)是否存在时刻t,使以A,M,N为顶点的三角形与ACD相似?若存在,求t的值;若不存在,请说明理由考点:相似三角形的判定;一元二次方程的应用;分式方程的应用;正方形的性质。菁优网版权所有专题:动点型。分析:(1)关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求
9、解即可,如本题中利用,AMN的面积等于矩形ABCD面积的作为相等关系;(2)先假设相似,利用相似中的比例线段列出方程,有解的且符合题意的t值即可说明存在,反之则不存在解答:解:(1)设经过x秒后,AMN的面积等于矩形ABCD面积的,则有:(62x)x=36,即x23x+2=0,(2分)解方程,得x1=1,x2=2,(3分)经检验,可知x1=1,x2=2符合题意,所以经过1秒或2秒后,AMN的面积等于矩形ABCD面积的(4分)(2)假设经过t秒时,以A,M,N为顶点的三角形与ACD相似,由矩形ABCD,可得CDA=MAN=90,因此有或(5分)即,或(6分)解,得t=;解,得t=(7分)经检验,
10、t=或t=都符合题意,所以动点M,N同时出发后,经过秒或秒时,以A,M,N为顶点的三角形与ACD相似(8分)点评:主要考查了相似三角形的判定,正方形的性质和一元二次方程的运用以及解分式方程要掌握正方形和相似三角形的性质,才会灵活的运用注意:一般关于动点问题,可设时间为x,根据速度表示出所涉及到的线段的长度,找到相等关系,列方程求解即可9如图,在梯形(txng)ABCD中,若ABDC,AD=BC,对角线BD、AC把梯形分成了四个小三角形(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少(dusho);(注意:全等看成相似的特例)(2)请你任
11、选(rn xun)一组相似三角形,并给出证明考点:相似三角形的判定;概率公式。菁优网版权所有专题:开放型。分析:(1)采用列举法,列举出所有可能出现的情况,再找出相似三角形即可求得;与,与相似;(2)利用相似三角形的判定定理即可证得解答:解:(1)任选两个三角形的所有可能情况如下六种情况:,(2分)其中有两组(,)是相似的选取到的二个三角形是相似三角形的概率是P=(4分)证明:(2)选择、证明在AOB与COD中,ABCD,CDB=DBA,DCA=CAB,AOBCOD(8分)选择、证明四边形ABCD是等腰梯形,DAB=CBA,在DAB与CBA中有AD=BC,DAB=CAB,AB=AB,DABCB
12、A,(6分)ADO=BCO又DOA=COB,DOACOB(8分)点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,即相似三角形的证明还考查了相似三角形的判定10附加题:如图ABC中,D为AC上一点,CD=2DA,BAC=45,BDC=60,CEBD于E,连接AE(1)写出图中所有(suyu)相等的线段,并加以证明;(2)图中有无相似三角形?若有,请写出一对(y du);若没有,请说明理由;(3)求BEC与BEA的面积(min j)之比考点:相似三角形的判定;三角形的面积;含30度角的直角三角形。菁优网版权所有分析:(
13、1)根据直角三角形中30度角所对的直角边是斜边的一半,可知CD=2ED,则可写出相等的线段;(2)两角对应相等的两个三角形相似则可判断ADEAEC;(3)要求BEC与BEA的面积之比,从图中可看出两三角形有一公共边可作为底边,若求得高之比可知面积之比,由此需作BEA的边BE边上的高即可求解解答:解:(1)AD=DE,AE=CECEBD,BDC=60,在RtCED中,ECD=30CD=2EDCD=2DA,AD=DE,DAE=DEA=30=ECDAE=CE(2)图中有三角形相似,ADEAEC;CAE=CAE,ADE=AEC,ADEAEC;(3)作AFBD的延长线于F,设AD=DE=x,在RtCED
14、中,可得CE=,故AE=ECD=30在RtAEF中,AE=,AED=DAE=30,sinAEF=,AF=AEsinAEF=点评:本题主要考查了直角三角形的性质,相似三角形的判定及三角形面积的求法等,范围较广11如图,在ABC中,AB=AC=a,M为底边BC上的任意一点,过点M分别作AB、AC的平行线交AC于P,交AB于Q(1)求四边形AQMP的周长;(2)写出图中的两对相似三角形(不需证明);(3)M位于BC的什么位置时,四边形AQMP为菱形并证明你的结论考点:相似三角形的判定;菱形的判定。菁优网版权所有分析:(1)根据平行四边形的性质可得到对应角相等对应边相等,从而不难求得其周长;(2)因为
15、B=C=PMC=QMB,所以PMCQMBABC;(3)根据中位线的性质及菱形的判定不难求得四边形AQMP为菱形解答:解:(1)ABMP,QMAC,四边形APMQ是平行四边形,B=PMC,C=QMBAB=AC,B=C,PMC=QMBBQ=QM,PM=PC四边形AQMP的周长=AQ+AP+QM+MP=AQ+QB+AP+PC=AB+AC=2a(2)PMAB,PCMACB,QMAC,BMQBCA;(3)当点M中BC的中点时,四边形APMQ是菱形,点M是BC的中点,ABMP,QMAC,QM,PM是三角形ABC的中位线AB=AC,QM=PM=AB=AC又由(1)知四边形APMQ是平行四边形,平行四边形AP
16、MQ是菱形点评:此题主要考查了平行四边形的判定和性质,中位线的性质,菱形的判定等知识点的综合运用12已知:P是正方形ABCD的边BC上的点,且BP=3PC,M是CD的中点(zhn din),试说明:ADMMCP解答:证明:正方形ABCD,M为CD中点,CM=MD=ADBP=3PC,PC=BC=AD=CMPCM=ADM=90,MCPADM14已知矩形ABCD,长BC=12cm,宽AB=8cm,P、Q分别是AB、BC上运动的两点若P自点A出发,以1cm/s的速度沿AB方向运动,同时,Q自点B出发以2cm/s的速度沿BC方向运动,问经过几秒,以P、B、Q为顶点(dngdin)的三角形与BDC相似?专
17、题:几何动点问题;分类讨论。分析:要使以P、B、Q为顶点的三角形与BDC相似,则要分两两种情况进行分析分别是PBQBDC或QBPBDC,从而解得所需的时间解答:解:设经x秒后,PBQBCD,由于PBQ=BCD=90,(1)当1=2时,有:,即;(2)当1=3时,有:,即,经过秒或2秒,PBQBCD15如图,在ABC中,AB=10cm,BC=20cm,点P从点A开始沿AB边向B点以2cm/s的速度移动,点Q从点B开始沿BC边向点C以4cm/s的速度移动,如果P、Q分别从A、B同时(tngsh)出发,问经过几秒钟,PBQ与ABC相似考点:相似三角形的判定;一元一次方程的应用。菁优网版权所有专题:动
18、点型。分析:设经过t秒后,PBQ与ABC相似,根据路程公式可得AP=2t,BQ=4t,BP=102t,然后利用相似三角形的性质对应边的比相等列出方程求解即可解答:解:设经过秒后t秒后,PBQ与ABC相似,则有AP=2t,BQ=4t,BP=102t,当PBQABC时,有BP:AB=BQ:BC,即(102t):10=4t:20,解得t=2.5(s)(6分)当QBPABC时,有BQ:AB=BP:BC,即4t:10=(102t):20,解得t=1所以,经过2.5s或1s时,PBQ与ABC相似(10分)解法二:设ts后,PBQ与ABC相似,则有,AP=2t,BQ=4t,BP=102t分两种情况:(1)当
19、BP与AB对应时,有=,即=,解得t=2.5s(2)当BP与BC对应时,有=,即=,解得t=1s所以经过1s或2.5s时,以P、B、Q三点为顶点的三角形与ABC相似16如图,ACB=ADC=90,AC=,AD=2问当AB的长为多少(dusho)时,这两个直角三角形相似分析:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似在RtABC和RtACD,直角边的对应需分情况讨论解答:解:AC=,AD=2,CD=要使这两个直角三角形相似,有两种情况:(1)当RtABCRtACD时,有=,AB=3;(2)当RtACBRtCDA时,有=,AB=3故
20、当AB的长为3或3时,这两个直角三角形相似17已知,如图,在边长为a的正方形ABCD中,M是AD的中点(zhn din),能否在边AB上找一点N(不含A、B),使得CDM与MAN相似?若能,请给出证明,若不能,请说明理由分析:两个三角形都是直角三角形,还只需满足一对角对应相等或夹直角的两边对应成比例即可说明两个三角形相似若DM与AM对应,则CDM与MAN全等,N与B重合,不合题意;若DM与AN对应,则CD:AM=DM:AN,得AN=a,从而确定N的位置解答:证明:分两种情况讨论:若CDMMAN,则=边长为a,M是AD的中点,AN=a若CDMNAM,则边长为a,M是AD的中点,AN=a,即N点与
21、B重合,不合题意所以,能在边AB上找一点N(不含A、B),使得CDM与MAN相似当AN=a时,N点的位置满足条件18如图在ABC中,C=90,BC=8cm,AC=6cm,点Q从B出发,沿BC方向以2cm/s的速度移动,点P从C出发,沿CA方向以1cm/s的速度移动若Q、P分别同时从B、C出发,试探究(tnji)经过多少秒后,以点C、P、Q为顶点的三角形与CBA相似?分析:此题要根据相似三角形的性质设出未知数,即经过x秒后,两三角形相似,然后根据速度公式求出他们移动的长度,再根据相似三角形的性质列出分式方程求解解答:解:设经过x秒后,两三角形相似,则CQ=(82x)cm,CP=xcm,(1分)C
22、=C=90, 当或时,两三角形相似(3分)(1)当时,x=;(4分)(2)当时,x=(5分)所以,经过秒或秒后,两三角形相似(6分)19如图所示,梯形ABCD中,ADBC,A=90,AB=7,AD=2,BC=3,试在腰AB上确定点P的位置(wi zhi),使得以P,A,D为顶点的三角形与以P,B,C为顶点的三角形相似分析:此题考查了相似三角形的判定与性质,解题时要认真审题,选择适宜的判定方法解题时要注意一题多解的情况,要注意别漏解解答:解:(1)若点A,P,D分别与点B,C,P对应,即APDBCP,=,=,AP27AP+6=0,AP=1或AP=6,检测:当AP=1时,由BC=3,AD=2,BP
23、=6,=,又A=B=90,APDBCP当AP=6时,由BC=3,AD=2,BP=1,又A=B=90,APDBCP(2)若点A,P,D分别与点B,P,C对应,即APDBPC=,=,AP=检验:当AP=时,由BP=,AD=2,BC=3,=,又A=B=90,APDBPC因此,点P的位置有三处,即在线段AB距离点A的1、6处点评:此题考查了相似三角形的判定和性质;判定为:有两个对应角相等的三角形相似;有两个对应边的比相等,且其夹角相等,则两个三角形相似;三组对应边的比相等,则两个三角形相似;性质为相似三角形的对应角相等,对应边的比相等20ABC和DEF是两个(lin )等腰直角三角形,A=D=90,D
24、EF的顶点E位于边BC的中点上(1)如图1,设DE与AB交于点M,EF与AC交于点N,求证(qizhng):BEMCNE;(2)如图2,将DEF绕点E旋转,使得DE与BA的延长线交于点M,EF与AC交于点N,于是(ysh),除(1)中的一对相似三角形外,能否再找出一对相似三角形并证明你的结论分析:因为此题是特殊的三角形,所以首先要分析等腰直角三角形的性质:可得锐角为45,根据角之间的关系,利用如果两个三角形的三组对应边的比相等,那么这两个三角形相似可判定三角形相似;再根据性质得到比例线段,有夹角相等证得ECNMEN解答:证明:(1)ABC是等腰直角三角形,MBE=45,BME+MEB=135又
25、DEF是等腰直角三角形,DEF=45NEC+MEB=135BEM=NEC,(4分)而MBE=ECN=45,BEMCNE(6分)(2)与(1)同理BEMCNE,(8分)又BE=EC,(10分)则ECN与MEN中有,又ECN=MEN=45,ECNMEN(12分)点评:此题考查了相似三角形的判定和性质:如果两个三角形的三组对应边的比相等,那么这两个三角形相似;如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;如果两个三角形的两个对应角相等,那么这两个三角形相似21如图,在矩形(jxng)ABCD中,AB=15cm,BC=10cm,点P沿AB边从点A开始向B以2cm/s的速度移动;
26、点Q沿DA边从点D开始向点A以1cm/s的速度移动如果P、Q同时出发,用t(秒)表示移动的时间,那么当t为何值时,以点Q、A、P为顶点的三角形与ABC相似分析:若以点Q、A、P为顶点的三角形与ABC相似,有四种情况:APQBAC,此时得AQ:BC=AP:AB;APQBCA,此时得AQ:AB=AP:BC;AQPBAC,此时得AQ:BA=AP:BC;AQPBCA,此时得AQ:BC=AP:BA可根据上述四种情况所得到的不同的对应成比例线段求出t的值解答:解:以点Q、A、P为顶点的三角形与ABC相似,所以ABCPAQ或ABCQAP,当ABCPAQ时,所以,解得:t=6;当ABCQAP时,所以,解得:t
27、=;当AQPBAC时,=,即=,所以t=;当AQPBCA时,=,即=,所以t=30(舍去)故当t=6或t=时,以点Q、A、P为顶点的三角形与ABC相似点评:此题主要考查了矩形的性质及相似三角形的判定和性质;当相似三角形的对应角和对应线段不明确时,应考虑到所有可能的情况,分类讨论,以免漏解22如图,路灯(P点)距地面8米,身高1.6米的小明从距路灯的底部(O点)20米的A点,沿OA所在的直线行走(xngzu)14米到B点时,身影的长度是变长了还是变短了?变长或变短了多少米?分析:如图,由于ACBDOP,故有MACMOP,NBDNOP即可由相似三角形的性质求解解答:解:MAC=MOP=90,AMC
28、=OMP,MACMOP,即,解得,MA=5米;同理,由NBDNOP,可求得NB=1.5米,小明的身影变短了51.5=3.5米23阳光明媚的一天(y tin),数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺,标杆,一副三角尺,小平面镜请你在他们提供的测量工具中选出所需工具,设计一种测量方案(1)所需的测量工具是:;(2)请在下图中画出测量示意图;(3)设树高AB的长度为x,请用所测数据(用小写字母表示)求出x分析:树比较高不易直接到达,因而可以利用三角形相似解决,利用树在阳光下出现的影子来解决解答:解:(1)皮尺,标杆;(2)测量示意图如图
29、所示;(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c,DEFBAC,(7分)点评:本题运用相似三角形的知识测量高度及考查学生的实践操作能力,应用所学知识解决问题的能力本题答案有多种,测量方案也有多种,如(1)皮尺、标杆、平面镜;(2)皮尺、三角尺、标杆24问题背景在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光(ynggung)下对校园中一些物体进行了测量下面是他们通过测量得到的一些信息:甲组:如图1,测得一根直立(zh l)于平地,长为80cm的竹竿的影长为60cm乙组:如图2,测得学校(xuxio)旗杆的影长为900cm丙组:如图3,测得校园景灯(灯罩视为球体,
30、灯杆为圆柱体,其粗细忽略不计)的高度为200cm,影长为156cm任务要求:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;(2)如图3,设太阳光线NH与O相切于点M请根据甲、丙两组得到的信息,求景灯灯罩的半径(友情提示:如图3,景灯的影长等于线段NG的影长;需要时可采用等式1562+2082=2602)分析:此题属于实际应用问题,解题时首先要理解题意,然后将实际问题转化为数学问题进行解答;此题需要转化为相似三角形的问题解答,利用相似三角形的性质,相似三角形的对应边成比例解答解答:解:(1)由题意可知:BAC=EDF=90,BCA=EFDABCDEF,即,(2分)DE=1200(cm)所
31、以,学校旗杆的高度是12m(3分)(2)解法一:与类似得:,即,GN=208(4分)在RtNGH中,根据勾股定理得:NH2=1562+2082=2602,NH=260(5分)设O的半径为rcm,连接OM,NH切O于M,OMNH(6分)则OMN=HGN=90,又ONM=HNG,OMNHGN,(7分),又ON=OK+KN=OK+(GNGK)=r+8,解得:r=12景灯灯罩的半径是12cm(8分)解法二:与类似得:,即,GN=208(4分)设O的半径为rcm,连接OM,NH切O于M,OMNH(5分)则OMN=HGN=90,又ONM=HNG,OMNHGN,即,(6分)MN=r,又ON=OK+KN=OK
32、+(GNGK)=r+8(7分)在RtOMN中,根据勾股定理得:r2+(r)2=(r+8)2即r29r36=0,解得:r1=12,r2=3(不合题意,舍去),景灯灯罩的半径是12cm(8分)25(2007白银(biyn))阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC解答:解:AEBD,ECADCB,EC=8.7m,ED=2.7m,CD=6mAB=1.8m,AC=BC+1.8m,BC=4,即窗口底边离地面的高为4m26如图,李华晚上在路灯下散步已知李华的身高(shn o)AB=h,灯柱的高OP=OP=l,两灯柱之间的距离OO=m(1)若李华距灯柱OP的水平距离(jl)OA=a,求他影子AC的长;(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值请说明理由;(3)若李华在点A朝着影子(如图箭头)的方向以v1匀速行走,试求他影子的顶端在地面上移动的速度v2考点:相似三角形的应用。菁优网版权所有专题:综合题;压轴题;转化思想。分析:利用相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 主管工作总结的成果总结计划
- 网络时代下的班级管理创新计划
- 农田临时雇工合同样本
- 出售大件挂车合同标准文本
- cnc加工合同样本
- 主持人演出合同范例
- 其他垃圾合同样本
- 与美容师合同标准文本
- 二灰材料合同样本
- 2025「合同管理专家经验」工程合同监管与行政控制策略:电脑化资料运用
- 学术论文的撰写方法与规范课件
- 管道冲洗吹扫清洗记录
- DB32T 4073-2021 建筑施工承插型盘扣式钢管支架安全技术规程
- 徐士良《计算机软件技术基础》(第4版)笔记和课后习题详解
- 广播式自动相关监视(ADS-B)ADS-B课件
- (新教材)教科版二年级上册科学 1.2 土壤 动植物的乐园 教学课件
- 粗大运动功能评估量表
- 新云智能化管理系统运行管理标准
- 技术咨询合同-碳核查
- 毕业设计(论文)-多功能平板道路清障车设计(拖拽车)
- 《诊疗六步》
评论
0/150
提交评论