人教版数学《组合意义和计算公式》_第1页
人教版数学《组合意义和计算公式》_第2页
人教版数学《组合意义和计算公式》_第3页
人教版数学《组合意义和计算公式》_第4页
人教版数学《组合意义和计算公式》_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人教版数学组合意义和计算公式教学目标 1.理解组合的意义,掌握组合数的计算公式; 教学重点:理解组合的意义,掌握组合数的计算公式问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加某天一项活动,有多少种不同的选法?甲、乙;甲、丙;乙、丙 3情境创设从已知的3个不同元素中每次取出2个元素,并成一组问题二从已知的3 个不同元素中每次取出2个元素,按照一定的顺序排成一列.问题一排列组合有顺序无顺序 一般地,从n个不同元素中取出m(mn)个元素并成一组,叫做从n个不同元素中取出m

2、个元素的一个组合. 排列与组合的概念有什么共同点与不同点? 概念讲解组合定义:?组合定义: 一般地,从n个不同元素中取出m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合排列定义: 一般地,从n个不同元素中取出m (mn) 个元素,按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列.共同点: 都要“从n个不同元素中任取m个元素” 不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关.概念讲解思考一:aB与Ba是相同的排列 还是相同的组合?为什么?思考二:两个相同的排列有什么特点?两个相同的组合呢?)元素相同;)元素排列顺序相同.元素相同概念理解

3、构造排列分成两步完成,先取后排;而构造组合就是其中一个步骤.思考三:组合与排列有联系吗?判断下列问题是组合问题还是排列问题? (1)设集合A=a,b,c,d,e,则集合A的含有3个元素的子集有多少个?(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票? 有多少种不同的火车票价?组合问题排列问题(3)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次?组合问题组合问题组合是选择的结果,排列是选择后再排序的结果.1.从 a , b , c三个不同的元素中取出两个元素的所有组合分别是:ab , ac , bc 2.已知4个元素a , b , c , d ,写出每次取出两个元素的所有

4、组合.ab c d b c d cd ab , ac , ad , bc , bd , cd(3个)(6个)概念理解 从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号 表示.如:从 a , b , c三个不同的元素中取出两个元素的所有组合个数是:如:已知4个元素a 、b 、 c 、 d ,写出每次取出两个元素的所有组合个数是:概念讲解组合数注意: 是一个数,应该把它与“组合”区别开来 1.写出从a,b,c,d 四个元素中任取三个元素的所有组合abc , abd , acd ,bcd .bcddcbacd练一练组合排列abcabdacdbcd

5、abc bac cabacb bca cbaabd bad dabadb bda dbaacd cad dacadc cda dcabcd cbd dbcbdc cdb dcb(三个元素的)1个组合,对应着6个排列你发现了什么?对于,我们可以按照以下步骤进行组合数公式 排列与组合是有区别的,但它们又有联系 一般地,求从n个不同元素中取出m个元素的排列数,可以分为以下2步: 第1步,先求出从这n个不同元素中取出m个元素的组合数 第2步,求每一个组合中m个元素的全排列数 根据分步计数原理,得到:因此: 这里m,n是自然数,且 mn ,这个公式叫做组合数公式 概念讲解组合数公式:从 n个不同元中取出

6、m个元素的排列数例1、计算: 例2.甲、乙、丙、丁4支足球队举行单循环赛,(1)列出所有各场比赛的双方;(2)列出所有冠亚军的可能情况.(2)甲乙、甲丙、甲丁、乙丙、乙丁、丙丁 乙甲、丙甲、丁甲、丙乙、丁乙、丁丙(1) 甲乙、甲丙、甲丁、乙丙、乙丁、丙丁解:例题分析(3)已知: ,求n的值 35 (2) 120例31.理解组合的定义,区别排列与组合之间的关系.思悟小结(2)同是从n个元素中取m个元素,但是组合一旦取完就结束,而排列还要继续进行排序(1)有序与无序的区别2.理解组合数的的定义与公式(1)(2)名学生,7人扫地,3人推车,那么不同 的分工方法有 种;组合应用【练习】1.用m、n表示

7、2.从8名乒乓球选手中选出3名打团体赛,共 有 种不同的选法;如果这三个选手又按照不同顺序安排,有 种方法. 例1. 在产品检验中,常从产品中抽出一部分进行检查.现有100件产品,其中3件次品,97件正品.要抽出5件进行检查,根据下列各种要求,各有多少种不同的抽法?(1)无任何限制条件;(2)全是正品;(3)只有2件正品;(4)至少有1件次品;(5)至多有2件次品;(6)次品最多.解答:(1)(2)(3)(4),或(5)(6)1.有10道试题,从中选答8道,共有 种选法、又若其中6道必答,共有 不同的种选法.2.某班有54位同学,正、副班长各1名,现选派6名同学参加某科课外小组,在下列各种情况

8、中 ,各有多少种不同的选法?(1)无任何限制条件;(2)正、副班长必须入选;(3)正、副班长只有一人入选;(4)正、副班长都不入选;(5)正、副班长至少有一人入选;(5)正、副班长至多有一人入选;练习:小结:至多至少问题常用分类的或排除法.例2 从数字1,2,5,7中任选两个 练习 有不同的英文书5本,不同的中文书7本, 从中选出两本书.(1)若其中一本为中文书,一本为英文书. 问共有多少种选法?(1) 可以得到多少个不同的和? (2)可以得到多少个不同的差?(2)若不限条件,问共有多少种选法?6个12个35种66种例4 有12名划船运动员,其中3人只会划左舷, 4人只会划右舷, 其它5人既会

9、划左舷, 又会划右舷, 现要从这12名运动员中选出6人平均分在左右舷参加划船比赛,有多少种不同的选法?例3 在MON的边OM上有5个异于O点的点,ON上有4个异于O点的点,以这十个点(含O)为顶点,可以得到多少个三角形?NOMABCDEFGHI练习 如图,在以AB为直径的半圆周上有异于A,B的六个点C1, C2 ,C3 , C4 ,C5 ,C6 , AB上有异于A, B的四个点D1 , D2 , D3 , D4,问 (1)以这10个点中的3个点为顶点可作多少个三角形? (2)以图中12个点(包括A,B)中的四个为顶点,可作多少个四边形?ABD1D2D3D4C1C2C3C4C5C6练习(1)求

10、的值 组合数的性质(1)(2)(2)求满足 的x值(3)求证:(4)求 的值1617005或25111. 排列与组合之间的区别在于有无顺序。组合中常见的问题有:选派问题、抽样问题、图形问题、集合问题、分组问题,解答组合问题的关键是用好组合的定义和两个基本原理,只选不排,合理分类、分步.2.理解组合数的性质3.解受条件限制的组合题,通常有直接法(合理分类)和间接法(排除法).思悟小结习题课组合与组合数 通过前面的学习,我们已经知道了组合的定义,组合数及其一些性质和组合与排列的关系。今天我们将在此基础上,继续学习它们的一些应用(一)组合数的公式及其性质:组合数性质1:2:特别地:701,或5练习一

11、(5)求 的值(1)(2)(3)(4)511求证:例题解读 证明:因为左边=注意阶乘的变形形式:=左边,评注: 所以等式成立练习精选: 证明下列等式 :(1)(2)例16本不同的书,按下列要求各有多少种不同的选法:(1)分给甲、乙、丙三人,每人2本;例题解读:解:(1)根据分步计数原理得到:种例16本不同的书,按下列要求各有多少种不同的选法:(2)分为三份,每份2本;解析:(2)分给甲、乙、丙三人,每人两本有 种方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有x种方法;第二步再将这三份分给甲、乙、丙三名同学有 种方法根据分步计数原理所以 可得: 例題解读:因此,分为三份,每份两本一

12、共有15种方法所以点评:本题是分组中的“均匀分组”问题 一般地:将mn个元素均匀分成n组(每组m个元素),共有 种方法例16本不同的书,按下列要求各有多少种不同的选法: (3)分为三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;解:(3)这是“不均匀分组”问题,一共有 种方法(4)在(3)的基础上再进行全排列,所以一共有 种方法例题解读:例16本不同的书,按下列要求各有多少种不同的选法:(5)分给甲、乙、丙三人,每人至少1本 解:(5)可以分为三类情况:“2、2、2型” 的分配情况,有 种方法;“1、2、3型” 的分配情况,有 种方法;“1、1、4型

13、”,有 种方法,所以,一共有90+360+90540种方法例题解读:元素相同问题隔板策略例.有10个运动员名额,再分给7个班,每班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成个空隙。在个空档中选个位置插个隔板,可把名额分成份,对应地分给个班级,每一种插板方法对应一种分法共有_种分法。一班二班三班四班五班六班七班将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为例2、(1)10个优秀指标分配给6个班级,每个班级至少一个,共有多少种不同的分配方法? (2)10个优秀指标分

14、配到1、2、 3三个班,若名额数不少于班级序号数,共有多少种不同的分配方法?分析:(1)这是同种元素的“不平均分组”问题.本小题可构造数学模型 ,用5个隔板插入10个指标中的9个空隙,既有 种方法。按照第一个隔板前的指标数为1班的指标,第一个隔板与第二个隔板之间的指标数为2班的指标,以此类推,因此共有 种分法.例题解读:(2)先拿3个指标分给二班1个,三班2个,然后,问题转化为7个优秀指标分给三个班,每班至少一个.由(1)可知共有 种分法注:第一小题也可以先给每个班一个指标,然后,将剩余的4个指标按分给一个班、两个班、三个班、四个班进行分类,共有 种分法. 例题解读:例3(1)四个不同的小球放

15、入四个不同的盒中,一共有多少种不同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?解:(1)根据分步计数原理:一共有 种方法; (2)(捆绑法)第一步:从四个不同的小球中任取两个“捆绑”在一起看成一个元素有 种方法;第二步:从四个不同的盒中任取三个将球放入有 种方法,所以,一共有 144种方法 例题解读例4马路上有编号为1,2,3,10的十盏路灯,为节约用电又不影响照明,可以把其中3盏灯关掉,但不可以同时关掉相邻的两盏或三盏,在两端的灯都不能关掉的情况下,有多少种不同的关灯方法?解:(插空法)本题等价于在7只亮着的路灯之间的6个空档中插入3只熄掉的灯,故所求方法总数

16、为 种方法例题解读:例5 一生产过程有4道工序,每道工序需要安排一人照看现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( )A24种 B36种 C48 D72种 B 例题解读:例6甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面。不同的安排方法共有( )A. 20种 B. 30种 C. 40种 D. 60种 A例7某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如题(16)图所示的6个点A、B、C、A1、B1、

17、C1上各装一个灯泡,要求同一条线段两端的灯泡不同色,则每种颜色的灯泡都至少用一个的安装方法共有 种(用数字作答). 21615个人分4张同样的足球票,每人至多分一张,而且票必须分完,那么不同的分法种数是 2某学生要邀请10位同学中的6位参加一项活动,其中有2位同学要么都请,要么都不请,共有 种邀请方法. 3.一个集合有5个元素,则该集合的非空真子集共有 个. 4.平面内有两组平行线,一组有m条,另一组有n条,这两组平行线相交,可以构成 个平行四边形 .5空间有三组平行平面,第一组有m个,第二组有n个,第三组有t个,不同两组的平面都相交,且交线不都平行,可构成 个平行六面体9830课堂练习:6.

18、高二某班第一小组共有12位同学,现在要调换座位,使其中有3个人都不坐自己原来的座位,其他9人的座位不变,共有 种不同的调换方法7.某兴趣小组有4名男生,5名女生:(1)从中选派5名学生参加一次活动,要求必须有2名男生,3名女生,且女生甲必须在内,有 种选派方法;(2)从中选派5名学生参加一次活动, 要求有女生但人数必须少于男生,有_种选派方法;(3)分成三组,每组3人,有_种不同分法. 3645280课堂练习:8.九张卡片分别写着数字0,1,2,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数?解:可以分为两类情况: 若取出6,则有 种方法;若不取6,则有 种方法,根据分类计数原理,一共有 + 602种方法 课堂练习:9. 某餐厅供应盒饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种.现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜_种.(结果用数值表示)7【解题回顾】由于化为一元二次不等式n2n400求解较繁,考虑到n为正整数,故解有关

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论