2022届浙江省金华市义乌市高三下学期第六次检测数学试卷含解析_第1页
2022届浙江省金华市义乌市高三下学期第六次检测数学试卷含解析_第2页
2022届浙江省金华市义乌市高三下学期第六次检测数学试卷含解析_第3页
2022届浙江省金华市义乌市高三下学期第六次检测数学试卷含解析_第4页
2022届浙江省金华市义乌市高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设正项等差数列的前项和为,且满足,则的最小值为A8B16C24D362已知复数,(为虚数单位),若为纯虚数,则()AB2CD3在四面体中,为正三角形,边长为6,则四面体的体积为( )ABC24D4某几何体的三视图如图所示,若侧视图和俯视图均是

2、边长为的等边三角形,则该几何体的体积为ABCD5函数的部分图像如图所示,若,点的坐标为,若将函数向右平移个单位后函数图像关于轴对称,则的最小值为( )ABCD6已知角的终边经过点,则ABCD7双曲线的渐近线方程是( )ABCD8设集合,若,则( )ABCD9复数( )ABCD10数列an,满足对任意的nN+,均有an+an+1+an+2为定值.若a7=2,a9=3,a98=4,则数列an的前100项的和S100=( )A132B299C68D9911根据如图所示的程序框图,当输入的值为3时,输出的值等于( )A1BCD12已知函数,若恒成立,则满足条件的的个数为( )A0B1C2D3二、填空题

3、:本题共4小题,每小题5分,共20分。13对于任意的正数,不等式恒成立,则的最大值为_.14设数列的前n项和为,且,若,则_.15已知点是抛物线的准线上一点,F为抛物线的焦点,P为抛物线上的点,且,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为_.16某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗原料1千克、原料2千克;生产乙产品1桶需耗原料2千克,原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利

4、润是_元.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知椭圆()的离心率为,且经过点.(1)求椭圆的方程;(2)过点作直线与椭圆交于不同的两点,试问在轴上是否存在定点使得直线与直线恰关于轴对称?若存在,求出点的坐标;若不存在,说明理由.18(12分)已知满足 ,且,求的值及的面积.(从,这三个条件中选一个,补充到上面问题中,并完成解答.)19(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:20(12分)已知三棱锥中,为等腰直

5、角三角形,设点为中点,点为中点,点为上一点,且(1)证明:平面;(2)若,求直线与平面所成角的正弦值21(12分)数列的前项和为,且.数列满足,其前项和为.(1)求数列与的通项公式;(2)设,求数列的前项和.22(10分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,则,当且仅当时等号成立,从而的最小值为16,故选B方法二:设正项等差数列的公差为d,由

6、等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B2C【解析】把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可【详解】,为纯虚数,解得故选C【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题3A【解析】推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【详解】解: 在四面体中,为等边三角形,边长为6,分别取的中点,连结,则,且,平面,平面,四面体的体积为:.故答案为:.【点睛】本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.4C【解析】

7、由三视图可知,该几何体是三棱锥,底面是边长为的等边三角形,三棱锥的高为,所以该几何体的体积,故选C5B【解析】根据图象以及题中所给的条件,求出和,即可求得的解析式,再通过平移变换函数图象关于轴对称,求得的最小值.【详解】由于,函数最高点与最低点的高度差为,所以函数的半个周期,所以,又,则有,可得,所以,将函数向右平移个单位后函数图像关于轴对称,即平移后为偶函数,所以的最小值为1,故选:B.【点睛】该题主要考查三角函数的图象和性质,根据图象求出函数的解析式是解决该题的关键,要求熟练掌握函数图象之间的变换关系,属于简单题目.6D【解析】因为角的终边经过点,所以,则,即.故选D7C【解析】根据双曲线

8、的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用8A【解析】根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【详解】依题意可知是集合的元素,即,解得,由,解得.【点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.9A【解析】试题分析:,故选A.【考点】复数运算【名师点睛】复数代数形式的四则运算的法则是进行复数运算的理论依据,加减运算类似于多项式的合并同类项,乘法法则类似于多项式的乘法法则,除法运算则先将除式写

9、成分式的形式,再将分母实数化.10B【解析】由为定值,可得,则是以3为周期的数列,求出,即求.【详解】对任意的,均有为定值,故,是以3为周期的数列,故,.故选:.【点睛】本题考查周期数列求和,属于中档题.11C【解析】根据程序图,当x0继续运行,x=1-2=-10,程序运行结束,得,故选C【点睛】本题考查程序框图,是基础题12C【解析】由不等式恒成立问题分类讨论:当,当,当,考查方程的解的个数,综合得解【详解】当时,满足题意,当时,故不恒成立,当时,设,令,得,得,下面考查方程的解的个数,设(a),则(a)由导数的应用可得:(a)在为减函数,在,为增函数,则(a),即有一解,又,均为增函数,所

10、以存在1个使得成立,综合得:满足条件的的个数是2个,故选:【点睛】本题考查了不等式恒成立问题及利用导数研究函数的解得个数,重点考查了分类讨论的数学思想方法,属难度较大的题型.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.【详解】由题均为正数,不等式恒成立,等价于恒成立,令则,当且仅当即时取得等号,故的最大值为.故答案为:【点睛】此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.149【解析】用换中的n,得,作差可得,从而数列是等比数列,再由即可得到

11、答案.【详解】由,得,两式相减,得,即;又,解得,所以数列为首项为-3、公比为3的等比数列,所以.故答案为:9.【点睛】本题考查已知与的关系求数列通项的问题,要注意n的范围,考查学生运算求解能力,是一道中档题.15【解析】由点坐标可确定抛物线方程,由此得到坐标和准线方程;过作准线的垂线,垂足为,根据抛物线定义可得,可知当直线与抛物线相切时,取得最小值;利用抛物线切线的求解方法可求得点坐标,根据双曲线定义得到实轴长,结合焦距可求得所求的离心率.【详解】是抛物线准线上的一点 抛物线方程为 ,准线方程为过作准线的垂线,垂足为,则 设直线的倾斜角为,则当取得最小值时,最小,此时直线与抛物线相切设直线的

12、方程为,代入得:,解得: 或双曲线的实轴长为,焦距为双曲线的离心率故答案为:【点睛】本题考查双曲线离心率的求解问题,涉及到抛物线定义和标准方程的应用、双曲线定义的应用;关键是能够确定当取得最小值时,直线与抛物线相切,进而根据抛物线切线方程的求解方法求得点坐标.161元【解析】设分别生产甲乙两种产品为 桶,桶,利润为元则根据题意可得目标函数 ,作出可行域,如图所示作直线 然后把直线向可行域平移,由图象知当直线经过 时,目标函数 的截距最大,此时 最大,由 可得,即 此时 最大 ,即该公司每天生产的甲4桶,乙4桶,可获得最大利润,最大利润为1【点睛】本题考查用线性规划知识求利润的最大值,根据条件建

13、立不等式关系,以及利用线性规划的知识进行求解是解决本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1) (2)见解析【解析】(1)由题得a,b,c的方程组求解即可(2)直线与直线恰关于轴对称,等价于的斜率互为相反数,即,整理.设直线的方程为,与椭圆联立,将韦达定理代入整理即可.【详解】(1)由题意可得,又, 解得,.所以,椭圆的方程为 (2)存在定点,满足直线与直线恰关于轴对称.设直线的方程为,与椭圆联立,整理得,.设,定点.(依题意则由韦达定理可得,. 直线与直线恰关于轴对称,等价于的斜率互为相反数. 所以,即得. 又,所以,整理得,.从而可得, 即,所以,当

14、,即时,直线与直线恰关于轴对称成立. 特别地,当直线为轴时,也符合题意. 综上所述,存在轴上的定点,满足直线与直线恰关于轴对称.【点睛】本题考查椭圆方程,直线与椭圆位置关系,熟记椭圆方程简单性质,熟练转化题目条件,准确计算是关键,是中档题.18见解析【解析】选择时:,,计算,根据正弦定理得到,计算面积得到答案;选择时,故,为钝角,故无解;选择时,根据正弦定理解得,根据正弦定理得到,计算面积得到答案.【详解】选择时:,,故.根据正弦定理:,故,故.选择时,故,为钝角,故无解.选择时,根据正弦定理:,故,解得,.根据正弦定理:,故,故.【点睛】本题考查了三角恒等变换,正弦定理,面积公式,意在考查学

15、生的计算能力和综合应用能力.19(1);(2)详见解析.【解析】(1)由短轴长可知,设,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果【详解】解:(1)由已知,得由,两式相减,得根据已知条件有,当时,即椭圆的标准方程为(2)当直线斜率不存在时,不等式成立.当直线斜率存在时,设由得,由化简,得令,则当且仅当时取等号当且仅当时取等号综上,【点睛】本题为直线与椭圆的综合应用,考查了椭圆方程的求法,点差法处理多

16、未知量问题,能够利用一元二次方程的知识转化处理复杂的计算形式,要求学生计算能力过关,为较难题20 (1)证明见解析;(2) 【解析】(1)连接交于点,连接,通过证,并说明平面,来证明平面(2)采用建系法以、所在直线分别为、轴建立空间直角坐标系,分别表示出对应的点坐标,设平面的一个法向量为,结合直线对应的和法向量,利用向量夹角的余弦公式进行求解即可【详解】证明:如图,连接交于点,连接,点为的中点,点为的中点,点为的重心,则,又平面,平面,平面;,可得,又,则以、所在直线分别为、轴建立空间直角坐标系,则, ,设平面的一个法向量为,由,取,得设直线与平面所成角为,则直线与平面所成角的正弦值为【点睛】

17、本题考查线面平行的判定定理的使用,利用建系法来求解线面夹角问题,整体难度不大,本题中的线面夹角的正弦值公式使用广泛,需要识记21(1),;(2).【解析】(1)令可求得的值,令,由得出,两式相减可推导出数列为等比数列,确定该数列的公比,利用等比数列的通项公式可求得数列的通项公式,再利用对数的运算性质可得出数列的通项公式;(2)运用等差数列的求和公式,运用数列的分组求和和裂项相消求和,化简可得.【详解】(1)当时,所以;当时,得,即,所以,数列是首项为,公比为 的等比数列,.;(2)由(1)知数列是首项为,公差为的等差数列,.,.所以.【点睛】本题考查数列的递推式的运用,注意结合等比数列的定义和通项公式,考查数列的求和方法:分组求和法和裂项相消求和,考查运算能力,属于中档题22(1),函数的单调递增区间为;(2).【解析】(1)运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论