2022届四川省荣县高三最后一卷数学试卷含解析_第1页
2022届四川省荣县高三最后一卷数学试卷含解析_第2页
2022届四川省荣县高三最后一卷数学试卷含解析_第3页
2022届四川省荣县高三最后一卷数学试卷含解析_第4页
2022届四川省荣县高三最后一卷数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设为等差数列的前项和,若,则ABCD2由实数组成的等比数列an的前n项和为Sn,则“a10”是

2、“S9S8”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件3已知点在双曲线上,则该双曲线的离心率为( )ABCD4如图,某几何体的三视图是由三个边长为2的正方形和其内部的一些虚线构成的,则该几何体的体积为( )ABC6D与点O的位置有关5将一块边长为的正方形薄铁皮按如图(1)所示的阴影部分裁下,然后用余下的四个全等的等腰三角形加工成一个正四棱锥形容器,将该容器按如图(2)放置,若其正视图为等腰直角三角形,且该容器的容积为,则的值为( )A6B8C10D126若双曲线的渐近线与圆相切,则双曲线的离心率为( )A2BCD7记单调递增的等比数列的前项和为,若,则( )ABC

3、D8我国南北朝时的数学著作张邱建算经有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?”则在该问题中,等级较高的二等人所得黄金比等级较低的九等人所得黄金( )A多1斤B少1斤C多斤D少斤9已知函数是定义在R上的奇函数,且满足,当时,(其中e是自然对数的底数),若,则实数a的值为( )AB3CD10为得到y=sin(2x-3)的图象,只需要将y=sin2x的图象( )A向左平移3个单位 B向左平移6个单位C向右平移3个单位 D向右平移6个单位11已知函数,对任意的,当时,则下列判断正确的是( )

4、AB函数在上递增C函数的一条对称轴是D函数的一个对称中心是12已知命题p:若,则;命题q:,使得”,则以下命题为真命题的是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13(5分)某膳食营养科研机构为研究牛蛙体内的维生素E和锌、硒等微量元素(这些元素可以延缓衰老,还能起到抗癌的效果)对人体的作用,现从只雌蛙和只雄蛙中任选只牛蛙进行抽样试验,则选出的只牛蛙中至少有只雄蛙的概率是_14二项式的展开式的各项系数之和为_,含项的系数为_15若双曲线C:(,)的顶点到渐近线的距离为,则的最小值_.16为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结

5、果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.18(12分)如图,在四棱锥PABCD中,底面ABCD为菱形,PA底面ABCD,BAD60,AB=PA4,E是PA的中点,AC,BD交于点O.(1)求证:OE平面PBC;(2)求三棱锥EPBD的体积

6、.19(12分)已知,函数有最小值7.(1)求的值;(2)设,求证:.20(12分)已知函数(,)满足下列3个条件中的2个条件:函数的周期为;是函数的对称轴;且在区间上单调.()请指出这二个条件,并求出函数的解析式;()若,求函数的值域.21(12分)在平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(ab0)的右准线方程为x2,且两焦点与短轴的一个顶点构成等腰直角三角形(1)求椭圆C的方程;(2)假设直线l:y=kx+m与椭圆C交于A,B两点若A为椭圆的上顶点,M为线段AB中点,连接OM并延长交椭圆C于N,并且ON=62OM,求OB的长;若原点O到直线l的距离为1,并且OAOB=,当4

7、556时,求OAB的面积S的范围22(10分)设,函数.(1)当时,求在内的极值;(2)设函数,当有两个极值点时,总有,求实数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据等差数列的性质可得,即,所以,故选C2C【解析】根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若an是等比数列,则,若,则,即成立,若成立,则,即,故“”是“”的充要条件,故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.3C【解析】将点A坐标代入双曲线方程即可求出双曲

8、线的实轴长和虚轴长,进而求得离心率.【详解】将,代入方程得,而双曲线的半实轴,所以,得离心率,故选C.【点睛】此题考查双曲线的标准方程和离心率的概念,属于基础题.4B【解析】根据三视图还原直观图如下图所示,几何体的体积为正方体的体积减去四棱锥的体积,即可求出结论.【详解】如下图是还原后的几何体,是由棱长为2的正方体挖去一个四棱锥构成的,正方体的体积为8,四棱锥的底面是边长为2的正方形,顶点O在平面上,高为2,所以四棱锥的体积为,所以该几何体的体积为.故选:B.【点睛】本题考查三视图求几何体的体积,还原几何体的直观图是解题的关键,属于基础题.5D【解析】推导出,且,设中点为,则平面,由此能表示出

9、该容器的体积,从而求出参数的值【详解】解:如图(4),为该四棱锥的正视图,由图(3)可知,且,由为等腰直角三角形可知,设中点为,则平面,解得.故选:D【点睛】本题考查三视图和锥体的体积计算公式的应用,属于中档题.6C【解析】利用圆心到渐近线的距离等于半径即可建立间的关系.【详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.7C【解析】先利用等比数列的性质得到的值,再根据的方程组可得的值,从而得到数列的公比,进而得到数列的通项和前项和,根据后两个公式可得

10、正确的选项.【详解】因为为等比数列,所以,故即,由可得或,因为为递增数列,故符合.此时,所以或(舍,因为为递增数列).故,.故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3) 为等比数列( )且公比为.8C【解析】设这十等人所得黄金的重量从大到小依次组成等差数列 则 由等差数列的性质得 ,故选C9B【解析】根据题意,求得函数周期,利用周期性和函数值,即可求得.【详解】由已知可知,所以函数是一个以4为周期的周期函数,所以,解得,故选:B.【点睛】本题考查函数周期的求解,涉及对数运算,属综合基础题.10D【解析】试题分析:因为,所以

11、为得到y=sin(2x-3)的图象,只需要将y=sin2x的图象向右平移6个单位;故选D考点:三角函数的图像变换11D【解析】利用辅助角公式将正弦函数化简,然后通过题目已知条件求出函数的周期,从而得到,即可求出解析式,然后利用函数的性质即可判断.【详解】,又,即,有且仅有满足条件;又,则,函数, 对于A,故A错误;对于B,由,解得,故B错误;对于C,当时,故C错误; 对于D,由,故D正确.故选:D【点睛】本题考查了简单三角恒等变换以及三角函数的性质,熟记性质是解题的关键,属于基础题.12B【解析】先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【详解】,因为,所以,所以,即命题p为

12、真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B. 【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.二、填空题:本题共4小题,每小题5分,共20分。13【解析】记只雌蛙分别为,只雄蛙分别为,从中任选只牛蛙进行抽样试验,其基本事件为,共15个,选出的只牛蛙中至少有只雄蛙包含的基本事件为,共9个,故选出的只牛蛙中至少有只雄蛙的概率是14 【解析】将代入二项式可得展开式各项系数之和,写出二项展开式通项,令的指数为,求出参数的值,代入通项即可得出项的系数.【详解】将代入二项式可得展开式各项系数和为.二项式的展开式通项为,令,解得,因此,展开式中含项

13、的系数为.故答案为:;.【点睛】本题考查了二项式定理及二项式展开式通项公式,属基础题15【解析】根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.【详解】由双曲线C:(,可得一条渐近线,一个顶点,所以,解得,则,当且仅当时,取等号,所以的最小值为.故答案为:【点睛】本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式求最值,注意验证等号成立的条件,属于基础题.16100.【解析】分析:根据频率分布直方图得到三等品的频率,然后可求得样本中三等品的件数详解:由题意得,三等品的长度在区间,和内,根据频率分布直方图可得三等品的频率为,样本中三等品

14、的件数为.点睛:频率分布直方图的纵坐标为,因此每一个小矩形的面积表示样本个体落在该区间内的频率,把小矩形的高视为频率时常犯的错误三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)【解析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用(1)的结论,进一步利用一元二次方程根和系数的关系式的应用求出结果.【详解】解:(1)直线的参数方程为(为参数),转换为直角坐标方程为.曲线的极坐标方程为.转换为,转换为直角坐标方程为.(2)直线的参数方程为(为参数),转换为标准式为(为参数),代入圆的直角坐标方程整理得,所以,.【点睛】本题属

15、于基础本题考查的知识要点:主要考查极坐标,参数方程与普通方程互化,及求三角形面积需要熟记极坐标系与参数方程的公式,及与解析几何相关的直线与曲线位置关系的一些解题思路18(1)证明见解析(2)【解析】(1)连接OE,利用三角形中位线定理得到OEPC,即可证出OE平面PBC;(2)由E是PA的中点,求出SABD,即可求解.【详解】(1)证明:如图所示:点O,E分别是AC,PA的中点,OE是PAC的中位线,OEPC,又OE平面PBC,PC平面PBC,OE平面PBC;(2)解:PAAB4,AE2,底面ABCD为菱形,BAD60,SABD,三棱锥EPBD的体积.【点睛】本题考查空间线、面位置关系,证明直

16、线与平面平行以及求三棱锥的体积,注意等体积法的应用,考查逻辑推理、数学计算能力,属于基础题.19(1).(2)见解析【解析】(1)由绝对值三解不等式可得,所以当时,即可求出参数的值;(2)由,可得,再利用基本不等式求出的最小值,即可得证;【详解】解:(1),当时,解得.(2),当且仅当,即,时,等号成立.【点睛】本题主要考查绝对值三角不等式及基本不等式的简单应用,属于中档题20()只有成立,;().【解析】()依次讨论成立,成立,成立,计算得到只有成立,得到答案.()得到,得到函数值域.【详解】()由可得,;由得:,;由得,;若成立,则,若成立,则,不合题意,若成立,则,与中的矛盾,所以不成立

17、,所以只有成立,.()由题意得,所以函数的值域为.【点睛】本题考查了三角函数的周期,对称轴,单调性,值域,表达式,意在考查学生对于三角函数知识的综合应用.21(1)x22+y2=1;(2)OB=173;106,225.【解析】(1)根据椭圆的几何性质可得到a2,b2;(2)联立直线和椭圆,利用弦长公式可求得弦长AB,利用点到直线的距离公式求得原点到直线l的距离,从而可求得三角形面积,再用单调性求最值可得值域【详解】(1)因为两焦点与短轴的一个顶点的连线构成等腰直角三角形,所以a=2c,又由右准线方程为x=2,得到a2c=2,解得a=2,c=1,所以b2=a2-c2=1 所以,椭圆C的方程为x2

18、2+y2=1 (2)设B(x1,y1),而A(0,1),则M(x12,1+y12), ON=62OM, N(6x14,6(1+y1)4)因为点B,N都在椭圆上,所以x122+y12=13x1216+3(1+y1)28=1,将下式两边同时乘以83再减去上式,解得y1=13,x12=169 所以OB=x12+y12=169+(13)2=173 由原点O到直线l的距离为1,得|m|1+k2=1,化简得:1+k2=m2 联立直线l的方程与椭圆C的方程:y=kx+mx22+y2=1,得(1+2k2)x2+4kmx+2m2-2=0设A(x1,y1),B(x2,y2),则x1+x2=-4km1+2k2,x1

19、x2=2m2-21+2k2,且=8k20 OAOB=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=(1+k2)x1x2+km(x1+x2)+m2=(1+k2)2m2-21+2k2-4k2m21+2k2+m2=2m2-2+2k2m2-2k2-4k2m2+m2+2k2m21+2k2 =3m2-2-2k21+2k2=1+k21+2k2=,所以k2=1-2-1OAB的面积S=121AB=121+k2|x1-x2|=121+k2(x1+x2)2-4x1x2=121+k28k2(1+2k2)2=2(1+k2)k2(1+2k2)2=2(1-),因为S=2(1-)在45,56为单调减函数,并且当=45时,S=225,当=56时,S=106,所以OAB的面积S的范围为106,225【点睛】圆锥曲线中最值与范围问题的常见求法:(1)几何法:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论