版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某几何体的三视图如图所示,则该几何体的体积为( )ABCD2若函数函数只有1个零点,则的取值范围是( )ABCD3
2、若,则下列不等式不能成立的是( )ABCD4已知集合,则的真子集个数为( )A1个B2个C3个D4个5已知是边长为的正三角形,若,则ABCD6要得到函数的图像,只需把函数的图像( )A向左平移个单位B向左平移个单位C向右平移个单位D向右平移个单位7在三棱锥中,点到底面的距离为2,则三棱锥外接球的表面积为( )ABCD8已知实数集,集合,集合,则( )ABCD9如图,平面四边形中,为等边三角形,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )ABCD10给出下列四个命题:若“且”为假命题,则均为假命题;三角形的内角是第一象限角或第二象限角;若命题,则命题,;设集合,则“”是“”的必
3、要条件;其中正确命题的个数是( )ABCD11在菱形中,分别为,的中点,则( )ABC5D12已知复数满足(是虚数单位),则=()ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,、的坐标分别为,且满足,为坐标原点,若点的坐标为,则的取值范围为_.14某城市为了解该市甲、乙两个旅游景点的游客数量情况,随机抽取了这两个景点20天的游客人数,得到如下茎叶图:由此可估计,全年(按360天计算)中,游客人数在内时,甲景点比乙景点多_天.15在中,是的角平分线,设,则实数的取值范围是_.16的展开式中的系数为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)
4、记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,求直线的斜率.18(12分)某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种.方案一:每满100元减20元;方案二:满100元可抽奖一次.具体规则是从装有2个红球、2个白球的箱子随机取出3个球(逐个有放回地抽取),所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款7折8折9折原价(1)该商场某顾客购物金额超过100元,若该顾客选择方案二,求该顾客获得7折或8折优惠的概率;(2)若某顾客购物金额为180元,选择哪种方案更划算?19(12分)已
5、知.()当时,解不等式;()若的最小值为1,求的最小值.20(12分)已知是递增的等比数列,且、成等差数列.()求数列的通项公式;()设,求数列的前项和.21(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB,AF1,M是线段EF的中点求证:(1)AM平面BDE;(2)AM平面BDF.22(10分)某市为了鼓励市民节约用电,实行“阶梯式”电价,将该市每户居民的月用电量划分为三档,月用电量不超过度的部分按元/度收费,超过度但不超过度的部分按元/度收费,超过度的部分按元/度收费(I)求某户居民用电费用(单位:元)关于月用电量(单位:度)的函数解析式;()为了了解居民的用电
6、情况,通过抽样,获得了今年1月份户居民每户的用电量,统计分析后得到如图所示的频率分布直方图,若这户居民中,今年1月份用电费用不超过元的占,求,的值;()在满足()的条件下,若以这户居民用电量的频率代替该月全市居民用户用电量的概率,且同组中的数据用该组区间的中点代替,记为该居民用户1月份的用电费用,求的分布列和数学期望.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥
7、,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积,下半部分的正三棱柱的体积,故该几何体的体积.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题.2C【解析】转化有1个零点为与的图象有1个交点,求导研究临界状态相切时的斜率,数形结合即得解.【详解】有1个零点等价于与的图象有1个交点记,则过原点作的切线,设切点为,则切线方程为,又切线过原点,即,将,代入解得所以切线斜率为,所以或故选:C【点睛】本题考查了导数在函数零点问题中的应用,考查了学生数形结合,转化划归,数学运算的能力,属于较难题.3B【解析】根据不等式的性质对选项
8、逐一判断即可.【详解】选项A:由于,即,所以,所以,所以成立;选项B:由于,即,所以,所以,所以不成立;选项C:由于,所以,所以,所以成立;选项D:由于,所以,所以,所以,所以成立.故选:B.【点睛】本题考查不等关系和不等式,属于基础题.4C【解析】求出的元素,再确定其真子集个数【详解】由,解得或,中有两个元素,因此它的真子集有3个故选:C.【点睛】本题考查集合的子集个数问题,解题时可先确定交集中集合的元素个数,解题关键是对集合元素的认识,本题中集合都是曲线上的点集5A【解析】由可得,因为是边长为的正三角形,所以,故选A6A【解析】运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变
9、形,整理后与对比,从而可选出正确答案.【详解】解:.对于A:可得.故选:A.【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.7C【解析】首先根据垂直关系可确定,由此可知为三棱锥外接球的球心,在中,可以算出的一个表达式,在中,可以计算出的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积【详解】取中点,由,可知:,为三棱锥外接球球心,过作平面,交平面于,连接交于,连接,为的中点由球的性质可知:平面,且设,在中,即,解得:,三棱锥的外接球的半径为:,三棱锥外接球的表面积为故选:.【点睛】
10、本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.8A【解析】可得集合,求出补集,再求出即可.【详解】由,得,即,所以,所以.故选:A【点睛】本题考查了集合的补集和交集的混合运算,属于基础题.9A【解析】将三棱锥补形为如图所示的三棱柱,则它们的外接球相同,由此易知外接球球心应在棱柱上下底面三角形的外心连线上,在中,计算半径即可.【详解】由,可知平面将三棱锥补形为如图所示的三棱柱,则它们的外接球相同由此易知外接球球心应在棱柱上下底面三角形的外心连线上,记的外心为,由为等边三角形,可得又,故在中,此即为外接球半径,从而外接球表面积为故选:
11、A【点睛】本题考查了三棱锥外接球的表面积,考查了学生空间想象,逻辑推理,综合分析,数学运算的能力,属于较难题.10B【解析】利用真假表来判断,考虑内角为,利用特称命题的否定是全称命题判断,利用集合间的包含关系判断.【详解】若“且”为假命题,则中至少有一个是假命题,故错误;当内角为时,不是象限角,故错误;由特称命题的否定是全称命题知正确;因为,所以,所以“”是“”的必要条件,故正确.故选:B.【点睛】本题考查命题真假的问题,涉及到“且”命题、特称命题的否定、象限角、必要条件等知识,是一道基础题.11B【解析】据题意以菱形对角线交点为坐标原点建立平面直角坐标系,用坐标表示出,再根据坐标形式下向量的
12、数量积运算计算出结果.【详解】设与交于点,以为原点,的方向为轴,的方向为轴,建立直角坐标系,则,所以.故选:B.【点睛】本题考查建立平面直角坐标系解决向量的数量积问题,难度一般.长方形、正方形、菱形中的向量数量积问题,如果直接计算较麻烦可考虑用建系的方法求解.12A【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】解:由,得,故选【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题二、填空题:本题共4小题,每小题5分,共20分。13【解析】由正弦定理可得点在曲线上,设,则,将代入可得,利用二次函数的性质可得范围.【详解】解:由正弦定理得,则点在曲线上,设,则,
13、又,因为,则,即的取值范围为.故答案为:.【点睛】本题考查双曲线的定义,考查向量数量积的坐标运算,考查学生计算能力,有一定的综合性,但难度不大.1472【解析】根据给定的茎叶图,得到游客人数在内时,甲景点共有7天,乙景点共有3天,进而求得全年中,甲景点比乙景点多的天数,得到答案.【详解】由题意,根据给定的茎叶图可得,在随机抽取了这两个景点20天的游客人数中,游客人数在内时,甲景点共有7天,乙景点共有3天,所以在全年)中,游客人数在内时,甲景点比乙景点多天.故答案为:.【点睛】本题主要考查了茎叶图的应用,其中解答中熟记茎叶图的基本知识,合理推算是解答的关键,着重考查了推理与运算能力,属于基础题.
14、15【解析】设,由,用面积公式表示面积可得到,利用,即得解.【详解】设,由得:,化简得,由于,故.故答案为:【点睛】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.1628【解析】将已知式转化为,则的展开式中的系数中的系数,根据二项式展开式可求得其值.【详解】,所以的展开式中的系数就是中的系数,而中的系数为,展开式中的系数为故答案为:28.【点睛】本题考查二项式展开式中的某特定项的系数,关键在于将原表达式化简将三项的幂的形式转化为可求的二项式的形式,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)0【解析】(1)根据题意
15、,设直线,与联立,得,再由弦长公式,求解.(2)设,根据直线的斜率为1,则,得到,再由,所以线段中点的纵坐标为,然后直线的方程与直线的方程 联立解得交点H的纵坐标,说明直线轴,直线的斜率为0.【详解】(1)依题意,则直线,联立得;设,则,解得,故抛物线的方程为.(2),因为直线的斜率为1,则,所以,因为,所以线段中点的纵坐标为.直线的方程为,即 直线的方程为,即 联立解得即点的纵坐标为,即直线轴,故直线的斜率为0.如果直线的斜率不存在,结论也显然成立,综上所述,直线的斜率为0.【点睛】本题考查抛物线的方程、直线与抛物线的位置关系,还考查推理论证能力以及化归与转化思想,属于中档题.18(1)(2
16、)选择方案二更为划算【解析】(1)计算顾客获得7折优惠的概率,获得8折优惠的概率,相加得到答案.(2)选择方案二,记付款金额为元,则可取的值为126,144,162,180.,计算概率得到数学期望,比较大小得到答案.【详解】(1)该顾客获得7折优惠的概率,该顾客获得8折优惠的概率,故该顾客获得7折或8折优惠的概率.(2)若选择方案一,则付款金额为.若选择方案二,记付款金额为元,则可取的值为126,144,162,180.,则.因为,所以选择方案二更为划算.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.19();().【解析】()当时,令,作出的图像,结合图像即可求解
17、;()结合绝对值三角不等式可得,再由“1”的妙用可拼凑为,结合基本不等式即可求解;【详解】()令,作出它们的大致图像如下:由或(舍),得点横坐标为2,由对称性知,点横坐标为2,因此不等式的解集为.().取等号的条件为,即,联立得因此的最小值为.【点睛】本题考查绝对值不等式、基本不等式,属于中档题20();().【解析】()设等比数列的公比为,根据题中条件求出的值,结合等比数列的通项公式可得出数列的通项公式;()求得,然后利用裂项相消法可求得.【详解】()设数列的公比为,由题意及,知.、成等差数列成等差数列,即,解得或(舍去),.数列的通项公式为;(),.【点睛】本题考查等比数列通项的求解,同时也考查了裂项求和法,考查计算能力,属于基础题.21(1)见解析(2)见解析【解析】(1)建立如图所示的空间直角坐标系,设ACBDN,连结NE.则N,E(0,0,1),A(,0),M.,.且NE与AM不共线NEAM.NE平面BDE,AM平面BDE,AM平面BDE.(2)由(1)知,D(,0,0),F(,1),(0,1),0,AMDF.同理AMBF.又DFBFF,AM平面BDF.22(1);(2),;(3)见解析.【解析】试题分析: (1)根据题意分段
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年高中英语Unit2Healthyeating单元同步复习学案新人教版必修3
- 高中历史第七单元苏联的社会主义建设第21课战后的经济改革与挫折史料解读素材北师大版必修2
- 2024-2025学年新教材高中英语Unit3DiverseCulturesSectionⅠListeningandSpeakingReadingandThinking学案含解析新人教版必修第三册
- 2025届高考英语词汇串记与阅读训练十二
- 2024年新教材高中地理第五章环境与发展第二节走向人地协调-可持续发展演练含解析新人教版必修2
- 网络运营及维护指南
- 网络营销工具开发与运营合同
- 网络科技公司产品研发与市场推广预案
- 眼镜店验光配镜服务合同
- 2024年度安川机器人工程师资格培训
- 9.2提高防护能力(课件)-2024-2025学年统编版道德与法治七年级上册
- 汽车修理业务受理程序、服务承诺、用户抱怨制度
- 2025届福建省厦门市外国语学校高二数学第一学期期末考试试题含解析
- 贵阳一中2025届高三10月高考适应性月考(二) 思想政治试卷(含答案)
- 建筑垃圾消纳处置场所建设可行性研究报告
- GB/T 44670-2024殡仪馆职工安全防护通用要求
- 期中高频易错卷(试题)-2024-2025学年数学五年级上册北师大版
- 2024江苏省沿海开发集团限公司招聘23人高频500题难、易错点模拟试题附带答案详解
- 外墙亮化工程施工方案
- 人教版(2024)七年级地理上册5.1《人口与人种》精美课件
- 新苏教版三年级上册科学全册知识点
评论
0/150
提交评论