2022届四川省仁寿县城北教学点高考数学一模试卷含解析_第1页
2022届四川省仁寿县城北教学点高考数学一模试卷含解析_第2页
2022届四川省仁寿县城北教学点高考数学一模试卷含解析_第3页
2022届四川省仁寿县城北教学点高考数学一模试卷含解析_第4页
2022届四川省仁寿县城北教学点高考数学一模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数的虚部为()A1B3C1D22已知曲线且过定点,若且,则的最小值为( ).AB9C5D3设

2、,为非零向量,则“存在正数,使得”是“”的( )A既不充分也不必要条件B必要不充分条件C充分必要条件D充分不必要条件4已知函数,关于的方程R)有四个相异的实数根,则的取值范围是()ABCD5已知数列满足,(),则数列的通项公式( )ABCD6在满足,的实数对中,使得成立的正整数的最大值为( )A5B6C7D97若的展开式中的系数之和为,则实数的值为( )ABCD18已知双曲线的左、右顶点分别是,双曲线的右焦点为,点在过且垂直于轴的直线上,当的外接圆面积达到最小时,点恰好在双曲线上,则该双曲线的方程为( )ABCD9设为非零实数,且,则( )ABCD10已知实数满足约束条件,则的最小值为( )A

3、-5B2C7D1111已知复数z满足(i为虚数单位),则z的虚部为( )ABC1D12a为正实数,i为虚数单位,则a=( )A2BCD1二、填空题:本题共4小题,每小题5分,共20分。13过抛物线C:()的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段的中点N且垂直于l的直线与C的准线交于点M,若,则l的斜率为_.14五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成_种不同的音序.15已知函数若关于的不等式的解集为,则实数的所有可能值之和为_

4、.16已知函数,且,使得,则实数m的取值范围是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,已知直线的参数方程为(为参数),圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系.(1)求和的极坐标方程;(2)过且倾斜角为的直线与交于点,与交于另一点,若,求的取值范围.18(12分)已知函数.(1)当时,不等式恒成立,求的最小值;(2)设数列,其前项和为,证明:.19(12分)已知数列,满足.(1)求数列,的通项公式;(2)分别求数列,的前项和,.20(12分)已知,如图,曲线由曲线:和曲线:组成,其中点为曲线所在圆锥曲线的焦点,点为曲线

5、所在圆锥曲线的焦点.()若,求曲线的方程;()如图,作直线平行于曲线的渐近线,交曲线于点,求证:弦的中点必在曲线的另一条渐近线上;()对于()中的曲线,若直线过点交曲线于点,求面积的最大值.21(12分)某校为了解校园安全教育系列活动的成效,对全校学生进行一次安全意识测试,根据测试成绩评定“合格”、“不合格”两个等级,同时对相应等级进行量化:“合格”记分,“不合格”记分.现随机抽取部分学生的成绩,统计结果及对应的频率分布直方图如下所示:等级不合格合格得分频数624()若测试的同学中,分数段内女生的人数分别为,完成列联表,并判断:是否有以上的把握认为性别与安全意识有关? 是否合格 性别 不合格合

6、格总计男生女生总计()用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中,共选取人进行座谈,现再从这人中任选人,记所选人的量化总分为,求的分布列及数学期望;()某评估机构以指标(,其中表示的方差)来评估该校安全教育活动的成效,若,则认定教育活动是有效的;否则认定教育活动无效,应调整安全教育方案.在()的条件下,判断该校是否应调整安全教育方案?附表及公式:,其中.22(10分)已知椭圆:的左、右焦点分别为,焦距为2,且经过点,斜率为的直线经过点,与椭圆交于,两点.(1)求椭圆的方程;(2)在轴上是否存在点,使得以,为邻边的平行四边形是菱形?如果存在,求出的取值范围,如果不存在,请说明理由

7、.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】对复数进行化简计算,得到答案.【详解】所以的虚部为故选B项.【点睛】本题考查复数的计算,虚部的概念,属于简单题.2A【解析】根据指数型函数所过的定点,确定,再根据条件,利用基本不等式求的最小值.【详解】定点为,,当且仅当时等号成立,即时取得最小值.故选:A【点睛】本题考查指数型函数的性质,以及基本不等式求最值,意在考查转化与变形,基本计算能力,属于基础题型.3D【解析】充分性中,由向量数乘的几何意义得,再由数量积运算即可说明成立;必要性中,由数量积运算可得,不一定有正数,

8、使得,所以不成立,即可得答案.【详解】充分性:若存在正数,使得,则,得证;必要性:若,则,不一定有正数,使得,故不成立;所以是充分不必要条件故选:D【点睛】本题考查平面向量数量积的运算,向量数乘的几何意义,还考查了充分必要条件的判定,属于简单题.4A【解析】=,当时时,单调递减,时,单调递增,且当,当,当时,恒成立,时,单调递增且,方程R)有四个相异的实数根.令=则,即.5A【解析】利用数列的递推关系式,通过累加法求解即可【详解】数列满足:,可得以上各式相加可得:,故选:【点睛】本题考查数列的递推关系式的应用,数列累加法以及通项公式的求法,考查计算能力6A【解析】由题可知:,且可得,构造函数求

9、导,通过导函数求出的单调性,结合图像得出,即得出,从而得出的最大值.【详解】因为,则,即整理得,令,设,则,令,则,令,则,故在上单调递增,在上单调递减,则,因为,由题可知:时,则,所以,所以,当无限接近时,满足条件,所以,所以要使得故当时,可有,故,即,所以:最大值为5.故选:A.【点睛】本题主要考查利用导数求函数单调性、极值和最值,以及运用构造函数法和放缩法,同时考查转化思想和解题能力.7B【解析】由,进而分别求出展开式中的系数及展开式中的系数,令二者之和等于,可求出实数的值.【详解】由,则展开式中的系数为,展开式中的系数为,二者的系数之和为,得.故选:B.【点睛】本题考查二项式定理的应用

10、,考查学生的计算求解能力,属于基础题.8A【解析】点的坐标为,展开利用均值不等式得到最值,将点代入双曲线计算得到答案.【详解】不妨设点的坐标为,由于为定值,由正弦定理可知当取得最大值时,的外接圆面积取得最小值,也等价于取得最大值,因为,所以,当且仅当,即当时,等号成立,此时最大,此时的外接圆面积取最小值,点的坐标为,代入可得,所以双曲线的方程为故选:【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.9C【解析】取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10A【

11、解析】根据约束条件画出可行域,再将目标函数化成斜截式,找到截距的最小值.【详解】由约束条件,画出可行域如图变为为斜率为-3的一簇平行线,为在轴的截距,最小的时候为过点的时候,解得所以,此时故选A项【点睛】本题考查线性规划求一次相加的目标函数,属于常规题型,是简单题.11D【解析】根据复数z满足,利用复数的除法求得,再根据复数的概念求解.【详解】因为复数z满足,所以,所以z的虚部为.故选:D.【点睛】本题主要考查复数的概念及运算,还考查了运算求解的能力,属于基础题.12B【解析】,选B.二、填空题:本题共4小题,每小题5分,共20分。13【解析】分别过A,B,N作抛物线的准线的垂线,垂足分别为,

12、根据抛物线定义和求得,从而求得直线l的倾斜角.【详解】分别过A,B,N作抛物线的准线的垂线,垂足分别为,由抛物线的定义知,因为,所以,所以,即直线的倾斜角为,又直线与直线l垂直且直线l的倾斜角为锐角,所以直线l的倾斜角为,.故答案为:【点睛】此题考查抛物线的定义,根据已知条件做出辅助线利用抛物线定义和几何关系即可求解,属于较易题目.141【解析】按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【详解】若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;若“角”在第二个或第四个位置上,则有种

13、;综上,共有种.故答案为:1【点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.15【解析】由分段函数可得不满足题意;时,可得,即有,解方程可得,4,结合指数函数的图象和二次函数的图象即可得到所求和【详解】解:由函数,可得的增区间为,时,时,当关于的不等式的解集为,可得不成立,时,时,不成立;,即为,可得,即有,显然,4成立;由和的图象可得在仅有两个交点综上可得的所有值的和为1故答案为:1【点睛】本题考查分段函数的图象和性质,考查不等式的解法,注意运用分类讨论思想方法,考查化简运算能力,属于

14、中档题16【解析】根据条件转化为函数在上的值域是函数在上的值域的子集;分别求值域即可得到结论.【详解】解:依题意,即函数在上的值域是函数在上的值域的子集.因为在上的值域为()或(),在上的值域为,故或,解得故答案为:.【点睛】本题考查了分段函数的值域求参数的取值范围,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)【解析】(1)直接利用转换公式,把参数方程,直角坐标方程与极坐标方程进行转化;(2)利用极坐标方程将转化为三角函数求解即可.【详解】(1)因为,所以的普通方程为,又,的极坐标方程为,的方程即为,对应极坐标方程为.(2)由己知设,则,所以,又

15、,当,即时,取得最小值;当,即时,取得最大值.所以,的取值范围为.【点睛】本题主要考查了直角坐标方程,参数方程与极坐标方程的互化,三角函数的值域求解等知识,考查了学生的运算求解能力.18(1);(2)证明见解析.【解析】(1),分,三种情况推理即可;(2)由(1)可得,即,利用累加法即可得到证明.【详解】(1)由,得.当时,方程的,因此在区间上恒为负数.所以时,函数在区间上单调递减.又,所以函数在区间上恒成立;当时,方程有两个不等实根,且满足,所以函数的导函数在区间上大于零,函数在区间上单增,又,所以函数在区间上恒大于零,不满足题意;当时,在区间上,函数在区间上恒为正数,所以在区间上恒为正数,

16、不满足题意;综上可知:若时,不等式恒成立,的最小值为.(2)由第(1)知:若时,.若,则,即成立.将换成,得成立,即,以此类推,得,上述各式相加,得,又,所以.【点睛】本题考查利用导数研究函数恒成立问题、证明数列不等式问题,考查学生的逻辑推理能力以及数学计算能力,是一道难题.19(1)(2);【解析】(1),可得为公比为2的等比数列,可得为公差为1的等差数列,再算出,的通项公式,解方程组即可;(2)利用分组求和法解决.【详解】(1)依题意有又.可得数列为公比为2的等比数列,为公差为1的等差数列,由,得解得故数列,的通项公式分别为.(2),.【点睛】本题考查利用递推公式求数列的通项公式以及分组求

17、和法求数列的前n项和,考查学生的计算能力,是一道中档题.20()和.;()证明见解析;().【解析】()由,可得,解出即可;()设点,设直线,与椭圆方程联立可得:,利用,根与系数的关系、中点坐标公式,证明即可;()由()知,曲线,且,设直线的方程为:,与椭圆方程联立可得: ,利用根与系数的关系、弦长公式、三角形的面釈计算公式、基本不等式的性质,即可求解.【详解】()由题意:,解得,则曲线的方程为:和.()证明:由题意曲线的渐近线为:,设直线,则联立,得,解得:,又由数形结合知. 设点,则,即点在直线上.()由()知,曲线,点,设直线的方程为:,联立,得:, ,设,面积,令,当且仅当,即时等号成

18、立,所以面积的最大值为.【点睛】本题考查了椭圆与双曲线的标准方程及其性质、直线与椭圆的相交问题、弦长公式、三角形的面积计算公式、基本不等式的性质,考查了推理论证能力与运算求解能力,属于难题.21()详见解析;()详见解析;()不需要调整安全教育方案.【解析】(I)根据题目所给数据填写好列联表,计算出的值,由此判断出在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.(II)利用超几何分布的计算公式,计算出的分布列并求得数学期望.(III)由(II)中数据,计算出,进而求得的值,从而得出该校的安全教育活动是有效的,不需要调整安全教育方案.【详解】解:()由频率分布直方图可知,得分在的频率为,故抽取的学生答卷总数为,.性别与合格情况的列联表为: 是否合格 性别 不合格合格小计男生女生小计即在犯错误概率不超过的前提下,不能认为性别与安全测试是否合格有关.()“不合格”和“合格”的人数比例为,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值为, .的分布列为:20151050所以. ()由()知: .故我们认为该校的安全教育活动是有效的,不需要调整安全教育方案.【点睛】本小题主要考查列联表独立性检验,考查超几何分布的分布列、数学期望和方差的计算,所以中档题.22(1)(2)存在;实数的取值范围是【解析】(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论