版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十一章 一元二次方程22.3 实际问题与二次函数(第1课时)【情感预热】问题1 (1)请写出下列抛物线的开口方向、对称轴和顶点坐标:y6x212x;y4x28x10.(2)以上两个函数,哪个函数有最大值,哪个函数有最小值?并说出两个函数的最大值或最小值分别是多少. 解(1)y6(x1)26,所以抛物线开口向上,对称轴为直线x1,顶点坐标为(1,6),当x1时,y有最小值6.(2)y4(x1)26,所以抛物线开口向下,对称轴为直线x1,顶点坐标为(1,6),当x1时,y有最大值6.【合作互动】问题2 例1 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的
2、关系式是h=30t-5t2(0t6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少? (1)图中抛物线的顶点在哪里?(2)这个抛物线的顶点是否是小球运动的最高点?(3)小球运动至最高点的时间是什么时间?(4)通过前面的学习,你认为小球运行轨迹的顶点坐标是什么?【合作互动】问题2 例1 从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t2(0t6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少? (1)图中抛物线的顶点在哪里?(2)这个抛物线的顶点是否是小球运动的最高点?(3)小球运动至最高点的时间是什么
3、时间?(4)通过前面的学习,你认为小球运行轨迹的顶点坐标是什么? 解当t= = =3时,h有最大值 = =45.即小球运动的时间是3 s时,小球最高,小球运动的最大高度是45 m. 结论一般地,当a0(a0)时,抛物线y=ax2+bx+c的顶点是最低(高)点,也就是说,当x= 时,二次函数y=ax2+bx+c有最小(大)值 .【合作互动】问题3 练习1如图,用12 m长的木料,做一个有一条横档的矩形的窗子,为了使透进的光线最多,窗子的长、宽应各是多少?【合作互动】问题2 练习2张大爷要围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形.设
4、AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写自变量x的取值范围);(2)当x为何值时,S有最大值?并求出其最大值. 【内化导行】问题2 练习2张大爷要围成一个矩形花圃,花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形.设AB边的长为x米,矩形ABCD的面积为S平方米.(1)求S与x之间的函数关系式(不要求写自变量x的取值范围);(2)当x为何值时,S有最大值?并求出其最大值. 解(1)由题意可知AB=x m,则BC=(32-2x)m,S=x(32-2x)=-2x2+32x.(2)S=-2x2+32x=-2(x-
5、8)2+128,当x=8时,S有最大值,最大值为128m2.【合作互动】问题4 例2如图所示,在边长为24cm的正方形纸片ABCD上,剪去图中阴影部分的四个全等的等腰直角三角形,再沿图中的虚线折起,折成一个长方体形状的包装盒(A、B、C、D四个顶点正好重合于上底面上一点).已知E、F在AB边上,是被剪去的一个等腰直角三角形斜边的两个端点,设AE=BF=x(cm).(1)若折成的包装盒恰好是个正方体,试求这个包装盒的V;(2)某广告商要求包装盒的表面(不含下底面)面积S最大,试问x应取何值? 【合作互动】问题4 【内化导行】问题4 练习3 如图,点E,F,G,H分别位于正方形ABCD的四条边上,
6、四边形EFGH也是正方形,当点E位于何处时,正方形EFGH的面积最小?解设AEx,AB1,正方形EFGH的面积为y.根据题意,得y12x(1x).整理,得y2x22x1,所以当x0.5时,正方形EFGH的面积最小为0.5,即当点E在AB的中点处时,正方形EFGH的面积最小.【内化导行】课堂小结:(1)课堂总结:谈一谈你在本节课中有哪些收获?有哪些进步?还有哪些困惑?教师强调利用面积公式列函数解析式是解答问题的主要方法.【内化导行】布置作业:教材第52页习题22.3第4,6题(2)知识网络:第二十一章 一元二次方程22.3 实际问题与二次函数(第2课时)【情感预热】问题1 某商品现在的售价为每件
7、60元,每星期可卖出300件市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件已知商品的进价为每件40元,应如何定价才能使利润最大? 解分两种情况讨论:设每件涨价x元,利润为y元根据题意,得y(60 x)(30010 x)40(30010 x)10 x2100 x6000(0 x30)因为a100,所以函数有最大值当x5时,y有最大值为6250.【情感预热】问题1 某商品现在的售价为每件60元,每星期可卖出300件市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件已知商品的进价为每件40元,应如何定价才能使利润
8、最大? 设每件降价x元,利润为y元根据题意,得y(60 x)(30020 x)40(30020 x)20 x2100 x6000(0 x20)当x2.5时,y有最大值为6125元综上所述,当定价为每件65元时,利润最大为6250元【情感预热】问题1 小结:用二次函数解决实际问题的一般步骤:确定自变量和函数;利用数量关系列函数解析式;确定自变量的取值范围;利用函数的性质求出最大利润 【内化导行】问题1 练习1某商店购进一批单价为20元/件的日用品,如果以单价30元/件销售,那么半个月内可以售出400件根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件售价定为多少
9、,才能在半个月内获得最大利润?解设单价提高x元,利润为y元根据题意,列函数解析式为y(30 x20)(40020 x)20 x2200 x4000(0 x20)所以当x5时,y有最大值为4500元【合作互动】问题2 例2 某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元市场调查发现,若每箱以45元的价格销售,则平均每天销售105箱;若每箱以50元的价格销售,则平均每天销售90箱,假定每天的销售量y(箱)与销售价x(元/箱)之间满足一次函数关系(1)求每天的销售量y(箱)与销售价x(元/箱)之间的函数解析式(不需要写出自变量的取值范围);(2)求该批发商平均每天的销售利
10、润w(元)与销售价x(元/箱)之间的函数解析式;(3)当每箱苹果的销售价为多少时,可以获得最大利润?最大利润是多少? y3x240由题意,得w(x40)(3x240)3x2360 x9600.当x60时,w有最大值,因为x55,所以当x55时,w的值最大,为1125元【内化导行】问题2 练习2某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销量y(件)之间的关系如下表:且日销量y(件)是销售价x(元)的一次函数.(1)求日销量y(件)与x(元)的一次函数.(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时最大销售利润是多少? 【内化导行】问题2 练习2解:(1)设
11、此一次函数解析式为y=kx+b, ,解得 ,即一次函数的解析式为y=-x+40.(2)设销售利润为w元,则W=(x-10)(-x+40)=-(x-25)2+225,当x=25时,w有最大值225.即产品的销售价定为25元时,每日获得销售利润最大为225元.【内化导行】问题2 练习3某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于340元.设每个房间每天的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直
12、接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为W元,求W与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元? 【内化导行】问题2 练习3解(1)y=50- x(0 x160,且x是10的正整数倍).(2)W=(50- x )(180+x-20)=-x2+34x+8000.(3)W=-x2+34x+8000=-(x-170)2+10890.当x170时,W随x增大而增大,但0 x160,当x=160时,y=50-x=34.答:一天订住34个房间时,宾馆的利润最大,最大利润为10880元.【内化导行】课堂小结:(1)本节课主要学习了哪些知识?学习
13、了哪些数学思想和方法?本节课还有哪些疑惑?说一说!(2)知识网络:【内化导行】布置作业:教材第51页习题22.3第2,8题第二十一章 一元二次方程22.3 实际问题与二次函数(第3课时)【情感预热】问题1 (1)欣赏一组石拱桥的图片(如图22326),观察桥拱的形状.这组石拱桥图案中,桥拱的形状和抛物线像吗?有关桥拱的问题可以用抛物线知识来解决吗? 【情感预热】问题1 (2)步行街广场中心处有高低不同的各种喷泉(如图22327),喷泉的形状和抛物线像吗?有关喷泉的问题可以用抛物线知识来解决吗? 【合作互动】问题2 如图是抛物线形拱桥,当拱顶离水面2米时,水面宽4米.若水面下降1米,则水面宽度将
14、增加多少米?解以抛物线的顶点为原点,对称轴为y轴,建立平面直角坐标系,如图.根据图象的特殊性,设抛物线的解析式为yax2,由抛物线经过点A(2,2),可得a所以抛物线的解析式为y x2.把y3代入函数解析式,得x ,所以CDAB(2 4)米,所以水面宽度将增加(2 4)米.【合作互动】问题2 如图是抛物线形拱桥,当拱顶离水面2米时,水面宽4米.若水面下降1米,则水面宽度将增加多少米?建立平面直角坐标系利用二次函数解决实际问题一般步骤:建立适当的平面直角坐标系;根据题意找出题目中的点的坐标;求出抛物线的解析式;直接利用图象解决实际问题.【合作互动】问题3 例1 一自动喷灌设备的喷流情况如右图所示
15、,设水管AB在高出地面1.5米的B处有一自动旋转的喷水头,其喷出的水流成抛物线形.喷头B与水流最高点C的连线与水管AB之间夹角为135(即ABC=135),且水流最高点C比喷头B高2米.试求水流落点D与A点的距离.(精确到0.1米)【合作互动】问题3 例1 解如图所示,以A为坐标原点,AD所在直线为x轴,AB所在直线为y轴建立平面直角坐标系.连BC,则ABC=135,过C点作CEx轴,垂足为E,又过B点作BFCE,垂足为F.由题意易证四边形AEFB为矩形,ABF=90,CBF=135-90=45,BCF=45,RtCBF为等腰直角三角形,又由题意易知AB=1.5米,CF=2米,BF=CF=2米
16、,而CE=CF+EF=CF+AB=3.5米,则B(0,1.5),C(2,3.5).设该图象解析式为y=a(x-h)2+k,则y=a(x-2)2+3.5,将B(0,1.5)代入可求得a=- .y=- (x-2)2+3.5.设D(m,0)代入,得m= +24.6.(负值已舍去)即DA=4.6米.【合作互动】问题3 例2 如图,一位篮球运动员在离篮筐水平距离4m处跳起投篮,球沿一条抛物线运行,球的出手高度为1.8m.当球运行的水平距离为2.5m时,达到最大高度,然后准确落入篮筐内.已知篮筐中心离地面的距离为3.05m,你能求出球所能达到的最大高度约是多少吗?(精确到0.01m)【合作互动】问题3 例2解如图所示,以篮框所在直线为y轴,地面所在直线为x轴,其交点为坐标原点O.建立平面直角坐标系,设篮框中心点为A点,运动员出手点为B点,顶点为C点,依题意可得A(0,3.05),B(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年建筑施工合同执行细则
- 劳务派遣补充合同范本2024年
- 2024专业版代理操盘合同
- 2024装修协议合同范本
- 2024设备转让合同范本设备购买合同范本2
- 南京银行学生贷款合同
- 城市轨道工程施工借款合同
- 2024苏州市全日制劳动合同
- 2024小卖部承包合同
- 2024自费养老合同范文
- 2024年二手物品寄售合同
- 2023年辽阳宏伟区龙鼎山社区卫生服务中心招聘工作人员考试真题
- 三年级数学(上)计算题专项练习附答案集锦
- 高一期中家长会班级基本情况打算和措施模板
- 历史期中复习课件七年级上册复习课件(部编版2024)
- 专题7.2 空间点、直线、平面之间的位置关系(举一反三)(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用)
- 7.2.2 先天性行为和学习行为练习 同步练习
- 2024-2025学年八年级物理上册 4.2光的反射说课稿(新版)新人教版
- 《现代管理原理》章节测试参考答案
- 2024秋期国家开放大学专科《高等数学基础》一平台在线形考(形考任务一至四)试题及答案
- TPO26听力题目及答案
评论
0/150
提交评论