版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1中,点在边上,平分,若,则( )ABCD2已知,则,的大小关系为( )ABCD3已知的内角的对边分别是且,若为最大边,则的取值范围是( )ABCD4宁波古圣王阳明的传习录专门讲过易经
2、八卦图,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(“”表示一根阳线,“”表示一根阴线)从八卦中任取两卦,这两卦的六根线中恰有四根阴线的概率为( )ABCD5已知,若对任意,关于x的不等式(e为自然对数的底数)至少有2个正整数解,则实数a的取值范围是( )ABCD6阅读下面的程序框图,运行相应的程序,程序运行输出的结果是( )A11B1C29D287已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为( )ABCD8如图,在中,点,分别为,的中点,若,且满足,则等于( )A2BCD9设集合,若集合中有且仅有2个元素,则实数的取值范围为ABCD1
3、0若函数在时取得最小值,则( )ABCD11陀螺是中国民间最早的娱乐工具,也称陀罗. 如图,网格纸上小正方形的边长为,粗线画出的是某个陀螺的三视图,则该陀螺的表面积为( )ABCD12已知等差数列的前项和为,若,则数列的公差为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若存在实数使得不等式在某区间上恒成立,则称与为该区间上的一对“分离函数”,下列各组函数中是对应区间上的“分离函数”的有_.(填上所有正确答案的序号),;,;,;,.14已知平面向量与的夹角为,则_.15如图,在ABC中,AB4,D是AB的中点,E在边AC上,AE2EC,CD与BE交于点O,若OBOC,则AB
4、C面积的最大值为_16已知“在中,”,类比以上正弦定理,“在三棱锥中,侧棱与平面所成的角为、与平面所成的角为,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)选修4-5:不等式选讲已知函数的最大值为3,其中(1)求的值;(2)若,求证:18(12分)某社区服务中心计划按月订购一种酸奶,每天进货量相同,进货成本每瓶5元,售价每瓶7元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:摄氏度)有关.如果最高气温不低于25,需求量为600瓶;如果最高气温位于区间,需求量为500瓶;如果最高气温低于20,需求量为30
5、0瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数414362763以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为(单位:瓶)时,的数学期望的取值范围?19(12分)已知函数,当时,有极大值3;(1)求,的值;(2)求函数的极小值及单调区间.20(12分)若函数为奇函数,且时有极小值.(1)求实数的值与实数的取值范围;(2)若恒成立,求实数的取值范围.21(12分)联合国粮农组织对某地区最近10年
6、的粮食需求量部分统计数据如下表:年份20102012201420162018需求量(万吨)236246257276286(1)由所给数据可知,年需求量与年份之间具有线性相关关系,我们以“年份2014”为横坐标,“需求量”为纵坐标,请完成如下数据处理表格:年份20140需求量2570(2)根据回归直线方程分析,2020年联合国粮农组织计划向该地区投放粮食300万吨,问是否能够满足该地区的粮食需求?参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为: ,.22(10分)已知函数是自然对数的底数.(1)若,讨论的单调性;(2)若有两个极值点,求的取值范围,并证明:.参考答案一、选择题
7、:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由平分,根据三角形内角平分线定理可得,再根据平面向量的加减法运算即得答案.【详解】平分,根据三角形内角平分线定理可得,又,.故选:.【点睛】本题主要考查平面向量的线性运算,属于基础题.2D【解析】构造函数,利用导数求得的单调区间,由此判断出的大小关系.【详解】依题意,得,.令,所以.所以函数在上单调递增,在上单调递减.所以,且,即,所以.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.3C【解析】由,化简得到的值,根据余
8、弦定理和基本不等式,即可求解.【详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理 ,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.4B【解析】根据古典概型的概率求法,先得到从八卦中任取两卦基本事件的总数,再找出这两卦的六根线中恰有四根阴线的基本事件数,代入公式求解.【详解】从八卦中任取两卦基本事件的总数种,这两卦的六根线中恰有四根阴线的基本事件数有6种,分别是(巽,坤),(兑,坤),(离,坤),(震,艮),(震,坎
9、),(坎,艮),所以这两卦的六根线中恰有四根阴线的概率是.故选:B【点睛】本题主要考查古典概型的概率,还考查了运算求解的能力,属于基础题.5B【解析】构造函数(),求导可得在上单调递增,则 ,问题转化为,即至少有2个正整数解,构造函数,通过导数研究单调性,由可知,要使得至少有2个正整数解,只需即可,代入可求得结果.【详解】构造函数(),则(),所以在上单调递增,所以,故问题转化为至少存在两个正整数x,使得成立,设,则,当时,单调递增;当时,单调递增.,整理得.故选:B.【点睛】本题考查导数在判断函数单调性中的应用,考查不等式成立问题中求解参数问题,考查学生分析问题的能力和逻辑推理能力,难度较难
10、.6C【解析】根据程序框图的模拟过程,写出每执行一次的运行结果,属于基础题.【详解】初始值, 第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.7A【解析】求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程【详解】抛物线y22px(p0)的焦点坐标为(1,0),则p2,又ep,所以e2,可得c24a2a2+b2,可得:ba,所以双曲线的渐近线方程为:y故选:A【点睛】本题考查双曲
11、线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用8D【解析】选取为基底,其他向量都用基底表示后进行运算【详解】由题意是的重心, ,故选:D【点睛】本题考查向量的数量积,解题关键是选取两个不共线向量作为基底,其他向量都用基底表示参与运算,这样做目标明确,易于操作9B【解析】由题意知且,结合数轴即可求得的取值范围.【详解】由题意知,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及运算,以及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.10D【解析】利用辅助角公式化简的解析式,再根据正弦函数的最值,求得在函数取得最小值时的值【详解】解:,其
12、中,故当,即时,函数取最小值,所以,故选:D【点睛】本题主要考查辅助角公式,正弦函数的最值的应用,属于基础题11C【解析】画出几何体的直观图,利用三视图的数据求解几何体的表面积即可,【详解】由题意可知几何体的直观图如图:上部是底面半径为1,高为3的圆柱,下部是底面半径为2,高为2的圆锥,几何体的表面积为:,故选:C【点睛】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键.12D【解析】根据等差数列公式直接计算得到答案.【详解】依题意,故,故,故,故选:D【点睛】本题考查了等差数列的计算,意在考查学生的计算能力.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由题意可知
13、,若要存在使得成立,我们可考虑两函数是否存在公切点,若两函数在公切点对应的位置一个单增,另一个单减,则很容易判断,对,都可以采用此法判断,对分析式子特点可知,进而判断【详解】时,令,则,单调递增, ,即.令,则,单调递减,即,因此,满足题意.时,易知,满足题意.注意到,因此如果存在直线,只有可能是(或)在处的切线,因此切线为,易知,因此不存在直线满足题意.时,注意到,因此如果存在直线,只有可能是(或)在处的切线,因此切线为.令,则,易知在上单调递增,在上单调递减,所以,即.令,则,易知在上单调递减,在上单调递增,所以,即.因此,满足题意.故答案为:【点睛】本题考查新定义题型、利用导数研究函数图
14、像,转化与化归思想,属于中档题14【解析】根据已知求出,利用向量的运算律,求出即可.【详解】由可得,则,所以.故答案为:【点睛】本题考查向量的模、向量的数量积运算,考查计算求解能力,属于基础题.15【解析】先根据点共线得到,从而得到O的轨迹为阿氏圆,结合三角形和三角形的面积关系可求.【详解】设B,O,E共线,则,解得,从而O为CD中点,故.在BOD中,BD2,易知O的轨迹为阿氏圆,其半径,故故答案为:.【点睛】本题主要考查三角形的面积问题,把所求面积进行转化是求解的关键,侧重考查数学运算的核心素养.16【解析】类比,三角形边长类比三棱锥各面的面积,三角形内角类比三棱锥中侧棱与面所成角【详解】,
15、故,【点睛】本题考查类比推理类比正弦定理可得,类比时有结构类比,方法类比等三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)见解析【解析】(1)分三种情况去绝对值,求出最大值与已知最大值相等列式可解得;(2)将所证不等式转化为2ab1,再构造函数利用导数判断单调性求出最小值可证【详解】(1),. 当时,取得最大值. . (2)由(),得,. ,当且仅当时等号成立,. 令,.则在上单调递减. 当时,.【点睛】本题考查了绝对值不等式的解法,属中档题本题主要考查了绝对值不等式的求解,以及不等式的恒成立问题,其中解答中根据绝对值的定义,合理去掉绝对值号,及合理转化恒成立问题
16、是解答本题的关键,着重考查分析问题和解答问题的能力,以及转化思想的应用.18(1)见解析;(2)【解析】(1)X的可能取值为300,500,600,结合题意及表格数据计算对应概率,即得解;(2)由题意得,分,及,分别得到y与n的函数关系式,得到对应的分布列,分析即得解.【详解】(1)由题意:X的可能取值为300,500,600 故:六月份这种酸奶一天的需求量(单位:瓶)的分布列为300500600(2)由题意得.1.当时,利润此时利润的分布列为.2.时,利润此时利润的分布列为.综上的数学期望的取值范围是.【点睛】本题考查了函数与概率统计综合,考查了学生综合分析,数据处理,转化划归,数学运算的能
17、力,属于中档题.19(1);(2)极小值为,递减区间为:,递增区间为.【解析】(1)由题意得到关于实数的方程组,求解方程组,即可求得的值;(2)结合(1)中的值得出函数的解析式,即可利用导数求得函数的单调区间和极小值.【详解】(1)由题意,函数,则,由当时,有极大值,则,解得.(2)由(1)可得函数的解析式为,则,令,即,解得,令,即,解得或,所以函数的单调减区间为,递增区间为,当时,函数取得极小值,极小值为.当时,有极大值3.【点睛】本题主要考查了函数的极值的概念,以及利用导数求解函数的单调区间和极值,其中解答中熟记函数的极值的概念,以及函数的导数与原函数的关系,准确运算是解答的关键,着重考
18、查了推理与运算能力,属于基础题.20(1), ;(2)【解析】(1)由奇函数可知 在定义域上恒成立,由此建立方程,即可求出实数的值;对函数进行求导,通过导数求出,若,则恒成立不符合题意,当,可证明,此时时有极小值.(2)可知,进而得到,令,通过导数可知在上为单调减函数,由可得,从而可求实数的取值范围.【详解】(1)由函数为奇函数,得在定义域上恒成立,所以,化简可得,所以.则,令,则.故当时,;当时,故在上递减,在上递增,若,则恒成立,单调递增,无极值点;所以,解得,取,则又函数的图象在区间上连续不间断,故由函数零点存在性定理知在区间上,存在为函数的零点,为极小值,所以,的取值范围是.(2)由满足,代入,消去可得.构造函数,所以,当时,即恒成立,故在上为单调减函数,其中.则可转化为,故,由,设,可得当时,则在上递增,故.综上,的取值范围是.【点睛】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,考查了奇函数的定义,考查了转化的思想.对于 恒成立的问题,常转化为求 的最小值,使;对于 恒成立的问题,常转化为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 特招医学生合同范例
- 包装授权合同范例
- 教育机构培训合同范例
- 定制仓库送货合同范例
- 工日单价劳务合同范例
- 武汉轻工大学《社交媒体传播》2023-2024学年第一学期期末试卷
- 医用耗材临床销售合同范例
- 武汉民政职业学院《连锁企业门店运营管理》2023-2024学年第一学期期末试卷
- 普通工种合同范例
- 英国租房中止合同范例
- 大学《传播学概论》试卷及答案
- 工程设计费收费标准
- -坚定目标赢在执行 主题班会课件
- 英语语法基础知识教学讲义课件
- 青岛版二年级上册数学《乘法的初步认识》单元整体备课设计
- 房屋买卖协议书电子版模板
- 食品分析习题(有答案)
- 研究思路图模板
- DB14T 1722-2018 桥梁加固用碳纤维复合材料板材的耐久性应用技术要求
- 装修工程验收单
- 骨折诊疗与护理考核试题与答案
评论
0/150
提交评论