




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设、,数列满足,则( )A对于任意,都存在实数,使得恒成立B对于任意,都存在实数,使得恒成立C对于任意,都存在实数,使得恒成立D对于任意,都存在实数,使得恒成立2已知a,b是两条不同的直线,是两个不同的平面,且,则“”是“”的( )A充分不必
2、要条件B必要不充分条件C充要条件D既不充分也不必要条件3设为非零实数,且,则( )ABCD4已知角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则( )ABCD5已知全集,集合,则( )ABCD6三棱柱中,底面边长和侧棱长都相等,则异面直线与所成角的余弦值为( )ABCD7设,集合,则()ABCD8若,则的虚部是A3BCD9已知,则( )ABCD10为了得到函数的图象,只需把函数的图象上所有的点( )A向左平移个单位长度B向右平移个单位长度C向左平移个单位长度D向右平移个单位长度11已知定义在上的函数的周期为4,当时,则( )ABCD12点是单位圆上不同的三点,线段与线段交于圆内一点M,
3、若,则的最小值为( ) ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知双曲线-=1(a0,b0)与抛物线y2=8x有一个共同的焦点F,两曲线的一个交点为P,若|FP|=5,则点F到双曲线的渐近线的距离为_.14已知函数是偶函数,直线与函数的图象自左向右依次交于四个不同点A,B,C,D若ABBC,则实数t的值为_15已知数列为等比数列,则_.16我国古代名著张丘建算经中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为_尺
4、,体积是_立方尺(注:1丈=10尺).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知多面体中,、均垂直于平面,是的中点(1)求证:平面;(2)求直线与平面所成角的正弦值18(12分)已知非零实数满足 (1)求证:; (2)是否存在实数,使得恒成立?若存在,求出实数的取值范围; 若不存在,请说明理由19(12分)如图,在四棱锥PABCD中,四边形ABCD为平行四边形,BDDC,PCD为正三角形,平面PCD平面ABCD,E为PC的中点 (1)证明:AP平面EBD;(2)证明:BEPC20(12分)某超市在节日期间进行有奖促销,规定凡在该超市购物满400元的顾客,均
5、可获得一次摸奖机会.摸奖规则如下:奖盒中放有除颜色不同外其余完全相同的4个球(红、黄、黑、白).顾客不放回的每次摸出1个球,若摸到黑球则摸奖停止,否则就继续摸球.按规定摸到红球奖励20元,摸到白球或黄球奖励10元,摸到黑球不奖励.(1)求1名顾客摸球2次摸奖停止的概率;(2)记X为1名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.21(12分)若数列前n项和为,且满足(t为常数,且)(1)求数列的通项公式:(2)设,且数列为等比数列,令,.求证:.22(10分)已知函数,(1)证明:在区间单调递减;(2)证明:对任意的有参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小
6、题给出的四个选项中,只有一项是符合题目要求的。1D【解析】取,可排除AB;由蛛网图可得数列的单调情况,进而得到要使,只需,由此可得到答案.【详解】取,数列恒单调递增,且不存在最大值,故排除AB选项;由蛛网图可知,存在两个不动点,且,因为当时,数列单调递增,则;当时,数列单调递减,则;所以要使,只需要,故,化简得且.故选:D【点睛】本题考查递推数列的综合运用,考查逻辑推理能力,属于难题2C【解析】根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基
7、础题.3C【解析】取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.4A【解析】由已知可得,根据二倍角公式即可求解.【详解】角的顶点与原点重合,始边与轴的正半轴重合,终边经过点,则,.故选:A.【点睛】本题考查三角函数定义、二倍角公式,考查计算求解能力,属于基础题.5B【解析】直接利用集合的基本运算求解即可【详解】解:全集,集合,则,故选:【点睛】本题考查集合的基本运算,属于基础题6B【解析】设,根据向量线性运算法则可表示出和;分别求解出和,根据向量夹角的求解方法求得,即可得所求角的
8、余弦值.【详解】设棱长为1,由题意得:,又即异面直线与所成角的余弦值为:本题正确选项:【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.7B【解析】先化简集合A,再求.【详解】由 得: ,所以 ,因此 ,故答案为B【点睛】本题主要考查集合的化简和运算,意在考查学生对这些知识的掌握水平和计算推理能力.8B【解析】因为,所以的虚部是.故选B9C【解析】利用二倍角公式,和同角三角函数的商数关系式,化简可得,即可求得结果.【详解】,所以,即.故选:C.【点睛】本题考查三角恒等变换中二倍角公式的应用和弦化切化简三角函数,难度较易.10D【解析】
9、通过变形,通过“左加右减”即可得到答案.【详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【点睛】本题主要考查三角函数的平移变换,难度不大.11A【解析】因为给出的解析式只适用于,所以利用周期性,将转化为,再与一起代入解析式,利用对数恒等式和对数的运算性质,即可求得结果.【详解】定义在上的函数的周期为4,当时,.故选:A.【点睛】本题考查了利用函数的周期性求函数值,对数的运算性质,属于中档题.12D【解析】由题意得,再利用基本不等式即可求解【详解】将平方得,(当且仅当时等号成立),的最小值为,故选:D【点睛】本题主要考查平面向量数量积的应用,考查基本
10、不等式的应用,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】设点为,由抛物线定义知,求出点P坐标代入双曲线方程得到的关系式,求出双曲线的渐近线方程,利用点到直线的距离公式求解即可.【详解】由题意得F(2,0),因为点P在抛物线y2=8x上,|FP|=5,设点为,由抛物线定义知,解得,不妨取P(3,2),代入双曲线-=1,得-=1,又因为a2+b2=4,解得a=1,b=,因为双曲线的渐近线方程为,所以双曲线的渐近线为y=x,由点到直线的距离公式可得,点F到双曲线的渐近线的距离.故答案为:【点睛】本题考查双曲线和抛物线方程及其几何性质;考查运算求解能力和知识迁移能力;灵活运
11、用双曲线和抛物线的性质是求解本题的关键;属于中档题、常考题型.14【解析】由是偶函数可得时恒有,根据该恒等式即可求得,的值,从而得到,令,可解得,三点的横坐标,根据可列关于的方程,解出即可【详解】解:因为是偶函数,所以时恒有,即,所以,所以,解得,;所以;由,即,解得;故,由,即,解得故,因为,所以,即,解得,故答案为:【点睛】本题考查函数奇偶性的性质及二次函数的图象、性质,考查学生的计算能力,属中档题1581【解析】设数列的公比为,利用等比数列通项公式求出,代入等比数列通项公式即可求解.【详解】设数列的公比为,由题意知, 因为,由等比数列通项公式可得,解得,由等比数列通项公式可得,.故答案为
12、:【点睛】本题考查等比数列通项公式;考查运算求解能力;属于基础题.1621 3892 【解析】根据题意画出图形,利用棱锥与棱台的结构特征求出正四棱台的高,再计算它的体积.【详解】如图所示:正四棱锥P-A BCD的下底边长为二丈,即AB=20尺,高三丈,即PO=30尺,截去一段后,得正四棱台ABCD-ABCD,且上底边长为AB=6尺,所以,解得,所以该正四棱台的体积是,故答案为:21;3892.【点睛】本题考查了棱锥与棱台的结构特征与应用问题,也考查了棱台的体积计算问题,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析;(2)【解析】(1)取的中点,连接
13、、,推导出四边形为平行四边形,可得出,由此能证明平面;(2)由,得平面,则点到平面的距离等于点到平面的距离,在平面内过点作于点,就是到平面的距离,也就是点到平面的距离,由此能求出直线与平面所成角的正弦值【详解】(1)取的中点,连接、,、分别为、的中点,则且,、均垂直于平面,且,则,且,所以,四边形为平行四边形,则,平面,平面,因此,平面;(2)由,平面,平面,平面,点到平面的距离等于点到平面的距离,在平面内过点作于点,平面,平面,平面,即就是到平面的距离,也就是点到平面的距离,设,则到平面的距离,因此,直线与平面所成角的正弦值为【点睛】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间
14、中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查数形结合思想,是中档题18(1)见解析(2)存在,【解析】(1)利用作差法即可证出.(2)将不等式通分化简可得,讨论或,分离参数,利用基本不等式即可求解.【详解】又即即当时,即恒成立(当且仅当时取等号),故当时恒成立(当且仅当时取等号),故综上,【点睛】本题考查了作差法证明不等式、基本不等式求最值、考查了分类讨论的思想,属于基础题.19(1)见解析(2)见解析【解析】(1)连结AC交BD于点O,连结OE,利用三角形中位线可得APOE,从而可证AP平面EBD;(2)先证明BD平面PCD,再证明PC平面BDE,从而可证BEPC【详解】
15、证明:(1)连结AC交BD于点O,连结OE因为四边形ABCD为平行四边形O为AC中点,又E为PC中点,故APOE,又AP平面EBD,OE平面EBD所以AP平面EBD;(2)PCD为正三角形,E为PC中点所以PCDE因为平面PCD平面ABCD,平面PCD平面ABCDCD,又BD平面ABCD,BDCDBD平面PCD又PC平面PCD,故PCBD又BDDED,BD平面BDE,DE平面BDE故PC平面BDE又BE平面BDE,所以BEPC【点睛】本题主要考查空间位置关系的证明,线面平行一般转化为线线平行来证明,直线与直线垂直通常利用线面垂直来进行证明,侧重考查逻辑推理的核心素养.20(1);(2)20.【
16、解析】(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值为:0,10,20,30,1分别求出取各个值时的概率,即可求出分布列和数学期望.【详解】(1)1名顾客摸球2次摸奖停止,说明第一次是从红球、黄球、白球中摸一球,第二次摸的是黑球,所以1名顾客摸球2次摸奖停止的概率(2)的可能取值为:0,10,20,30,1,随机变量X的分布列为: X 0 10 20 30 1 P 数学期望.【点睛】本题主要考查离散型随机变量的分布列和数学期望,属于中档题.21(1)(2)详见解析【解析】(1)利用可得的递推关系,从而可求其通项.(2)由为等比数列可得,从而可得的通项,利用错位相减法可得的前项和,利用不等式的性质可证.【详解】(1)由题意,得:(t为常数,且),当时,得,得.由,故,故.(2)由,由为等比数列可知:,又,故,化简得到,所以或(舍).所以,则.设的前n项和为.则,相减可得【点睛】数列的通项与前项和 的关系式,我们常利用这个关系式实现与之间的相互转化. 数列求和关键看通项的结构形式,如果通项是等差数列与等比数列的和,则用分组求和法;如果通项是等差数列与等比数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年6人股东合作协议书模板
- 五年级上册数学教案-4.4 探索活动:三角形的面积(8)-北师大版
- 五年级下册数学教案-3.2 2和5的倍数的特征丨苏教版
- 8-数学广角-搭配(二)-人教版三年级下册数学单元测试卷(含答案和解析)-
- 《木兰诗》历年中考古诗欣赏试题汇编(截至2024年)
- Unit Six《 Lesson 17 Happy Chinese New Year to Our Family!》(教学设计)-2024-2025学年北京版(2024)英语一年级上册
- 2024年磁粉离合器项目资金需求报告代可行性研究报告
- 2025年度个人与环保科技公司环保项目提成合同
- 2025年度便利店加盟店合作协议
- 2025年度离职员工解除劳动合同保密协议书及保密承诺书
- 新能源客车安全应急处理指南
- (正式版)JTT 421-2024 港口固定式起重机安全要求
- 地连墙施工MJS工法桩施工方案
- 《电力建设施工技术规范 第2部分:锅炉机组》DLT 5190.2
- 教案设计常见问题及解决措施
- (正式版)JBT 14682-2024 多关节机器人用伺服电动机技术规范
- 《宁向东的清华管理学课》学习笔记
- 信访维稳工作培训
- 品牌社群视角下顾客参与价值共创的影响研究-基于小米社群运营案例分析
- 《银行保险理财沙龙》课件
- 像科学家一样思考-怎么做-怎么教-
评论
0/150
提交评论