




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-. z.理工大学课程考核论文课程名称: 课程设计论文题目:银行效劳数据的统计分析*:其然*:1111850114成绩:任课教师评语: 签名: 年 月 日【摘要】排队论是运筹学的一个重要分支,又称随机效劳系统理论,是研究由随机因素的影响而产生拥挤现象的科学。它通过研究各种效劳系统在排队等待中的概率特性,来解决效劳系统的最优设计与最优控制问题。随着社会文明的开展与进步,排队已成为和我们生活密不可分的话题。去银行、商场等随机性效劳机构购物,如在结算时出现长时排队等待现象,是件让人头痛的事情,有时会因此取消购物方案。身为商家,如何在最低本钱运营的情况下最大化的为顾客提供优质效劳,减少顾客无谓的等待时
2、间,是重多经营者亟待解决的问题。因此,根据排队论的知识来优化银行的排队系统是具有现实意义的。计算机模拟就是利用计算机对所研究系统的部构造、功能和行为进展模拟。由于排队论的应用已越来越广泛,排队特征、排队规则和效劳机构也变得越来越复杂,解析方法已无法求解,而计算机模拟是求解排队系统和分析排队系统性能的一种非常有效的方法,并且计算机模拟具有本钱低,运行速度快,准确度高的优点。将排队论与计算机模拟结合起来,是今后排队论开展的必然趋势。在银行中客户排队是一个常见的现象,特别是近年来随着客户规模的不断,扩大以及营业厅扩建速度跟不上客户需求增长的矛盾愈显突出。因此,为平稳波动的客户,需求与移动营业厅有限的
3、效劳能力之间的矛盾,提升客户满意度,开展缩短客户等待时长,优化营业厅效劳的工程刻不容缓。本文基于需求管理的理论,运用现代工程管理工具,针对交通银行营业厅进展顾客到达时间间隔、效劳员完成效劳时间等资料的收集和对客户进展问卷调查、访谈的根底上,对数据进展统计分析,包括数据的均值、众数、中位数、方差指标,并做经历分布函数、拟合数据分布、分布参数的估计、分布假设检验,来反映目前交通银行营业厅排队现状。之后,从客户角度出发,分析了造成移动营业厅排队问题的原因,进而从缴费类型和对时间与价格敏感度两个角度对客户的需求进展了分析,总结出适合缩短客户等待时长的工程管理方案。并在此根底上提出基于需求管理的解决移动
4、营业厅排队问题。【关键词】:统计特征; 分布假设; 分布检验第1章 绪 论1.1 本论文的背景和意义随着社会文明的开展与进步,我们的物质文化生活水平在日趋提高,但由此也给我们的生活带来了诸多不便。排队已成为和我们生活密不可分的话题。公交车站长长的等候队伍,拥挤的站台,水泄不通的城市交通和超市、商场的大量购物客流都会让我们陷入短期的不安与烦躁之中。排队论是运筹学的一个重要分支,主要研究排队等待中的概率特性,是一门随机效劳系统理论。这门应用数学学科开创于20 世纪30 年代初。排队论逐渐被数学界成认是在30 年代中期,这源于W.Feller 将生灭过程引进了排队论。此后,伴随着研究的不断深入,在海
5、陆空的各项运输管理与城市交通管理、计算机存储、银行效劳及物流调度等各领域排队理论都逐步得到了广泛的应用。目前,各大中城市的银行越建越多,但有时,银行常常存在不协调的现象:顾客较多,开放的收银台个数较少,银行结算需要排很长时间的队,直接影响顾客的返途乘车,间接导致顾客对银行的满意度下降。有时则出现顾客较少,开放的收银台个数较多的现象,导致收银员闲置,直接影响银行收益。动态开放柜台数之所以必要,不仅是因为它可以降低本钱,还因为它可以同时增加顾客的满意度,这样能够提高整体收益,使系统到达最正确运行状态。对于任何一家银行而言,在剧烈的市场竞争下,想要生存与开展不仅要考虑打价格战,还要更多的考虑顾客的需
6、求与感受。作为银行等大型效劳单位而言,让顾客满意是效劳的宗旨,也是长久吸引顾客光临的重要保障。到达顾客满意或提升在顾客心中的形象的根本做法则是尽可能的减少顾客因排队等待而浪费的珍贵时间,同时,再兼顾最低的经营本钱,就会在剧烈的竞争下,占有一席之地或具备较高的竞争实力。银行排队效劳系统是一个随机效劳系统,顾客的到达是随机的,而员工对顾客的效劳时间也是由顾客的情况随机而定的。在客流量较大时,如果银行开放的柜台数目过少,将会导致顾客长时排队等待,容易引起不满,严重会致使客流损失,降低收益。反之,假设开放过多柜台, 虽能为顾客提供快速效劳,但是却会增加员工的空闲时间,导致经营本钱增加,整体收益下降。如
7、何合理的开放柜台的数目,并根据顾客数量动态协调,是银行等随机效劳行业亟待解决的问题。由此,基于排队理论研究如何设置超市收银台的数目,开放多少,是具有现实意义的。1.2 统计初步理工大学北三号门对面交通银行实地检测统计,统计的时间为2014年9月2日、3日、6日和9日的上午9:00-11:30或下午2:00-4:30,记20个工作小时,606位顾客,其中有4个数据由于记录时间段的不完整,无法进展统计,成为无效数据。原数据见附件1,整理数据见表1。表1 顾客到达分布表以10分钟为一个时间间隔顾客到达数频数01234567891011121314041219219151212460101合计116n
8、第2章 正文2.1 初等统计随着社会和经济的开展,概率统计的根底知识越来越多的应用于社会的各个方面,所以,初中学习统计初步知识很有必要。如下列图1所示的各方各面即为我们所要考察的局部。图1 统计初步图2.1.1 均值、中位数与众数平均数是指在一组数据中所有数据之和再除以这组数据的个数。平均数是统计中的一个重要概念。小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中位置的一个统计量。既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进展不同组数据的比拟,以看出组与组之间的差异。用平均数表
9、示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均速度、平均身高、平均产量、平均成绩等等。众数是样本观测值在频数分布表中频数最多的那一组的组中值,主要应用于大面积普查研究之中。众数是在一组数据中,出现次数最多的数据,是一组数据中的原数据,而不是相应的次数。一组数据中的众数不止一个,如数据2、3、-1、2、1、3中,2、3都出现了两次,它们都是这组数据中的众数。中位数又称中值,英语:Median,统计学中的专有名词,代表一个样本、种群或概率分布中的一个数值,其可将数值集合划分为相等的上下两局部。对于有限的数集,可以通过把所有观察值上下排序后找出正中间的一个作为中位数。如果观察
10、值有偶数个,则中位数不唯一,通常取最中间的两个数值的平均数作为中位数。一个数集中最多有一半的数值小于中位数,也最多有一半的数值大于中位数。如果大于和小于中位数的数值个数均少于一半,那麽数集中必有假设干值等同于中位数。设连续随机变量*的分布函数为F(*),则满足P(*m)=F(m)=1/2的数称为*或分布F的中位数。对于一组有限个数的数据来说,它们的中位数是这样的一种数:这群数据里的一半的数据比它大,而另外一半数据比它小。 计算有限个数的数据的中位数的方法是:把所有的同类数据按照大小的顺序排列。如果数据的个数是奇数,则中间那个数据就是这群数据的中位数;如果数据的个数是偶数,则中间那2个数据的算术
11、平均值就是这群数据的中位数。平均数的大小与一组数据里的每个数据均有关系,其中任何数据的变动都会相应引起平均数的变动;众数则着眼于对各数据出现的次数的考察,其大小只与这组数据中的局部数据有关,当一组数据中有不少数据屡次重复出现时,其众数往往是我们关心的一种统计量;中位数则仅与数据排列位置有关,当一组数据从小到大排列后,最中间的数据为中位数(偶数个数据的最中间两个的平均数)。因此*些数据的变动对它的中位数影响不大。在同一组数据中,众数、中位数和平均数也各有其特性:(1)中位数与平均数是唯一存在的,而众数是不唯一的;(2)众数、中位数和平均数在一般情况下是各不相等,但在特殊情况下也可能相等。每10分
12、钟顾客平均到达率顾客的平均到达时间间隔众数:4中位数:52.1.3 极差、最值极差是指一组测量值最大值与最小值之差,又称围误差或全距,以R表示。它是标志值变动的最大围,它是测定标志变动的最简单的指标。移动极差Moving Range是其中的一种。极差没有充分利用数据的信息,但计算十分简单,仅适用样本容量较小n 0是分布的一个参数,常被称为率参数rate parameter。即每单位时间发生该事件的次数。指数分布的区间是0,)。 如果一个随机变量*呈指数分布,则可以写作:* E*ponential累积分布函数可以写成:2.3.2.2 指数分布检验方法我们仍使用皮尔逊检验法,研究顾客到达是否服从指
13、数分布。估计指数分布里的参数,使用极大似然法。假设总体T服从指数分布,即 是取自总体T的样本, 为对应于 的一组样本值,则表示样本的似然函数,将其两端取对数,可得令得的最大似然估计值是则的最大似然估计量是由原始数据计算得,如果为真,则T的分布函数估计为见表3表3 指数分布配适宜度检验计算表人数n实际频数指数分布理论频数000.17469320.264420.2644140.14417516.724359.681042120.11898913.802720.2354473190.09820211.391485.0818294210.0810479.40146814.30904590.066889
14、7.7590960.1984576150.0552046.40363511.539937120.045565.2849648.5320758120.0376014.36171713.37624940.0310323.5997550.0445021060.0256112.9709033.0884321100.0211372.4519062.4519061210.0174452.0235750.517751300.0143971.670071.67007141000合计116n70.72671,70.7267129.819,故拒绝,认为总体不服从指数分布。2.3.3 线性回归分布2.3.3.1 线
15、性回归简介及做法在统计学中,线性回归是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进展建模的一种回归分析。这种函数是一个或多个称为回归系数的模型参数的线性组合。只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归。这反过来又应当由多个相关的因变量预测的多元线性回归区别,而不是一个单一的标量变量。在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定*值的y的条件均值是*的仿射函数。不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定*的条件下y的条件分布的分位数作为*的线性
16、函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定*值的y的条件概率分布,而不是*和y的联合概率分布多元分析领域。线性回归是回归分析中第一种经过严格研究并在实际应用中广泛使用的类型。这是因为线性依赖于其未知参数的模型比非线性依赖于其位置参数的模型更容易拟合,而且产生的估计的统计特性也更容易确定。给一个随机样本,一个线性回归模型假设回归子和回归量之间的关系是除了*的影响以外,还有其他的变量存在。我们参加一个误差项也是一个随机变量来捕获除了之外任何对的影响。所以一个多变量线性回归模型表示为以下的形式:其他的模型可能被认定成非线性模型。一个线性回归模型不需要是自变量的线性函数。线性在这里表
17、示的条件均值在参数里是线性的。例如:模型在和里是线性的,但在里是非线性的,它是的非线性函数。区分随机变量和这些变量的观测值是很重要的。通常来说,观测值或数据以小写字母表记包括了n个值.我们有个参数需要决定,为了估计这些参数,使用矩阵表记是很有用的。其中Y是一个包括了观测值的列向量,包括了未观测的随机成份以及回归量的观测值矩阵:*通常包括一个常数项。如果*列之间存在线性相关,那麽参数向量就不能以最小二乘法估计除非被限制,比方要求它的一些元素之和为0。样本是在母体之中随机抽取出来的。因变量Y在实直线上是连续的,残差项是独立且一样分布的(iid),也就是说,残差是独立随机的,且服从高斯分布。这些假设
18、意味着残差项不依赖自变量的值,所以和自变量*预测变量之间是相互独立的。在这些假设下,建立一个显示线性回归作为条件预期模型的简单线性回归,可以表示为:回归分析的最初目的是估计模型的参数以便到达对数据的最正确拟合。在决定一个最正确拟合的不同标准之中,最小二乘法是非常优越的。这种估计可以表示为:对于每一个,我们用代表误差项的方差。一个无偏误的估计是:其中是误差平方和残差平方和。估计值和实际值之间的关系是:其中服从卡方分布,自由度是对普通方程的解可以冩为:这表示估计项是因变量的线性组合。进一步地说,如果所观察的误差服从正态分布。参数的估计值将服从联合正态分布。在当前的假设之下,估计的参数向量是准确分布
19、的。其中表示多变量正态分布。参数估计值的标准差是:参数的置信区间可以用以下式子来计算:误差项可以表示为:单变量线性回归,又称简单线性回归simple linear regression, SLR,是最简单但用途很广的回归模型。其回归式为:为了估计和,我们有一个样本最小二乘法就是将未知量残差平方和最小化:分别对和求导得到正规方程:此线性方程组可以用克莱姆法则来求解:协方差矩阵是:平均响应置信区间为:2.3.3.2 线性回归检验我们采用SPSS程序做检验。SPSS是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生Norman H. Nie、C. Hadlai (Te*) Hull 和 Dal
20、e H. Bent于1968年研究开发成功,同时成立了SPSS公司,并于1975年成立法人组织、在芝加哥组建了SPSS总部。1984年SPSS总部首先推出了世界上第一个统计分析软件微机版本SPSS/PC+,开创了SPSS微机系列产品的开发方向,极扩大了它的应用围,并使其能很快地应用于自然科学、技术科学、社会科学的各个领域。世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价。将数据输入并直接让SPSS进展分析,得到表4如下结果表4 SPSS检验回归方程表Anovab模型平方和df均方FSig.1回归151.5571151.5573.5
21、10.084a残差561.3761343.183总计712.93314a. 预测变量: (常量), VAR00001。b. 因变量: VAR00002模型汇总模型RR 方调整 R 方标准估计的误差1.461a.213.1526.57136a. 预测变量: (常量), VAR00001。系数a模型非标准化系数标准系数tSig.B标准误差试用版1(常量)12.8833.2303.988.002VAR00001-.736.393-.461-1.873.084a. 因变量: VAR00002由以上拟合,得知B=12.883,R=0.461,最前方程Y=B+R*而相关系数Sig=0.0840.05,故不
22、相关,拟合失败。完毕语本文基于排队论理论的指导,结合排队等候时长的工程管理实践,对交通银行营业厅管理系统作了一些初步的研究和探讨。工程组工作人员,通过理论与实践的结合,增强了工程管理的能力,突破了单靠传统的工程管理意识和管理手段,仅凭干劲、热情和勇气去促成工程的完成的模式;规了工程管理行为,认清了研究的规性与实践中的差异、约束,拓宽了解决问题的思路,探索了适合营业厅的运营支撑系统建立的管理方法。论文所完成的工作主要有以下几点:(1)完成了营业厅现状调研,梳理了现有管理规,并进一步拟定了适合新的竞争环境的排队等候管理制度及规。(2)剖析了统计数据,完成了对其平均数,中位数,众数,方差,标准差,最
23、值的分析与计算(3)结合营业厅的环境,对该工程的整体情况作了进一步的研究。介绍了对于统计学比拟重要的几种分布(4)在研究的过程中,根据工程的特点,重点探索了几种分布的拟合以及拟合过后的检验,得出结论:符合泊松分布,不符合指数分布与一元二次函数分布。(5)在检验分布的过程中结合实际结合现今科技开展,用SPSS软件也进展了一次检验,体会了科技的进步附1:局部原始调查数据 附表1 附表22014年9月2日,9:20-10:53 2014年9月3日,14:16-16:30 时分秒时分秒19200011416472920552141759392113314230049214041423195924205
24、142449692442614283479283971429048929268143022993147914310410932181014315311935081114323512942151214372213942421314412214943571414434215944231514453216944521614472617946461714481218950261814505118950351914523020951462014524221953102114540822953492214545523958212314555524959552414581425100520251503082
25、610065326150315271009332715032028101237281503272910141529150455301016003015083531101723311515273210211732151552331024393315200734102450341520253510252335152125361026523615213337102926371523033810295438152328391029593915254540103013401526084110322041152742421037574215301043104400431531304410452844153
26、443451046194515384946104633461539124710523947153930481540514915405650154140511542265215451253154535541546415515494356155020571553495815545459155721601557356115575862160247631602516416054665160653661607116716071368160746691611277016113471161136721612257316124274161303741613097616144477161820781618467
27、916293780162952 附表3 附表42014年9月6日,9:00-11:32 2014年9月6日,13:23-16:40时分秒时分秒1900201132351290034213240439021831330134905304133716590535513390469072061339257910047133943891329813451899145091346511091537101350031192110111356441292153121406091392513131406151492748141410301592836151410571693512161423021793948
28、171423471894200181426081994605191427482094912201429592194922211433152295113221433202395134231434362495402241438122595613251438322695622261448082795821271450202895913281450562910011529145316301003403014583331100444311459163210045332150021331008243315003234100947341502533510123135150437361015263615070
29、737101531371510473810154038151335391016163915153340102038401516394110232041152635421023584215292743102429431529324410250344153050451026004515310846102658461537544710305547153801481032314815393149103321491540275010335550154141511038405115420052103928521542125310415653154220541044435415454555104458551547335610512956155130571051355715523858105317581600585910533659160511601053416016052761105543611605366211045062160954631104576316112064110721641613076511112465161310661112266616131467111837671619006811190268163134691121116916315070112354701635507111312471163854 附表52014年9月9日,13:06-15:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 云南省开远市第二中学2025届化学高二下期末学业质量监测试题含解析
- 浙江省嘉兴市嘉善高级中学2025届高二下化学期末达标检测试题含解析
- 新疆巩留县高级中学2024-2025学年物理高二第二学期期末学业质量监测试题含解析
- 跨国劳务派遣中介服务与合同履行及费用结算合同
- 电子设备仓储与高效货物航空运输合同
- 智能化标准厂房租赁及服务合同范本
- 车辆抵押担保贷款风险预警合同
- 茶楼环保与可持续发展合同
- 婚纱摄影策划合同范本
- 浙江省台州市临海市2025年八年级下学期期末数学试题及参考答案
- 小学生军人知识普及
- DB65-T 4863-2024 超设计使用年限压力容器安全评估规则
- 九年级上册《道德与法治》教案
- 2025陕西建工控股集团限公司招聘12人易考易错模拟试题(共500题)试卷后附参考答案
- 光储充一体化低碳发展项目可行性研究报告写作模板-备案审批
- 智慧工会管理系统需求方案
- 临床三基培训
- 配电室巡检培训
- 混凝土工程施工质量控制培训材料
- 《工程勘察设计收费标准》(2002年修订本)
- 2024草原承包合同书
评论
0/150
提交评论