高中数学选修1-1全套导学案(自编更新中...)_第1页
高中数学选修1-1全套导学案(自编更新中...)_第2页
高中数学选修1-1全套导学案(自编更新中...)_第3页
高中数学选修1-1全套导学案(自编更新中...)_第4页
高中数学选修1-1全套导学案(自编更新中...)_第5页
已阅读5页,还剩49页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上精选优质文档-倾情为你奉上专心-专注-专业专心-专注-专业精选优质文档-倾情为你奉上专心-专注-专业1.11命题导学案【教学目标】理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;通过学生的参与,激发学生学习数学的兴趣。 【重点】命题的概念、命题的构成【难点】分清命题的条件、结论和判断命题的真假【教学过程】学生探究过程:1复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题? 2思考、分析例1、下列语句的表述形式有什么特点?

2、你能判断他们的真假吗?(1)若直线ab,则直线a与直线b没有公共点 (2)2+4=7(3)垂直于同一条直线的两个平面平行()若x2=1,则x=1()两个全等三角形的面积相等()能被整除3抽象、归纳命题定义: 4练习、深化例2、判断下列语句是否为命题? ()空集是任何集合的子集 ()若整数a是素数,则是a奇数()指数函数是增函数吗? ()若平面上两条直线不相交,则这两条直线平行() ()x过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?5.命题的构成条件和结论定义: 6练习、深化例3、指出下列命题中的条件p和结论q,并判断各命题

3、的真假()若整数a能被整除,则a是偶数()若四边行是菱形,则它的对角线互相垂直平分()若a0,b0,则a+b0()若a0,b0,则a+b0()垂直于同一条直线的两个平面平行过渡:从例中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题7命题的分类真命题、假命题的定义真命题: 假命题: 8怎样判断一个数学命题的真假? 9练习、深化例4:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:面积相等的两个三角形全等。负数的立方是负数。对顶角相等。10、巩固练习:1:教材练习 第题2:教材练习 第3题3:判断下列语

4、句中哪些是命题?是真命题还是假命题?(1)2小于或等于2;(2)对数函数是增函数吗?(3);(4)不相交的两条直线一定平行;(5)明天下雨.布置课后作业:【以下数学题讲完新课后写在作业本上】必做题:P8:习题1组第1题2给出下列命题:若,则;若,则;对于实数,若,则;若,则;正方形不是菱形其中真命题是 ;假命题是 (填上所有符合题意的序号)3将下列命题改写成“若则”的形式:(1)垂直于同一直线的两条直线平行;(2)斜率相等的两条直线平行;(3)钝角的余弦值是负数1.1.2四种命题1.1.3四种命题的相互关系导学案【教学目标】了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形

5、式和四种命题间的相互关系,会用等价命题判断四种命题的真假。多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力【重点】(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系【难点】(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;(3)分析四种命题之间相互的关系并判断命题的真假【教学过程】复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题? 2思考、分析例

6、1、下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数 (2)若f(x)是周期函数,则f(x)是正弦函数(3)若f(x)不是正弦函数,则f(x)不是周期函数(4)若f(x)不是周期函数,则f(x)不是正弦函数3抽象概括互逆命题定义: 互否命题定义: 互为逆否命题定义: 4四种命题的形式让学生结合所举例子,思考:若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?学生通过思考、分析、比较,总结如下:原命题:若P,则q则:逆命题: 否命题: 逆否命题: 5当堂训练 巩固双基例2、写出下

7、列命题的逆命题、否命题、逆否命题并判断它们的真假:若一个三角形的两条边相等,则这个三角形的两个角相等;若一个整数的末位数字是,则这个整数能被整除;若x2=1,则x=1;若整数a是素数,则是a奇数。6思考、分析结合以上练习思考:原命题的真假与其它三种命题的真假有什么关系?结合以上练习完成下列表格:原 命 题逆 命 题否 命 题逆 否 命 题真真假真假真假假由此会引起我们的思考:一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢?学生通过分析,将发现四种命题间的关系如下图所示: 若P,则q若q,则P原命题互 逆逆命题互否互 为 否逆互否 为 互逆 否否命题逆否命题互 逆若P,则q若q,

8、则P7例题分析 加深理解例3: 证明:若p2 q2 2,则p q 2 例4:证明:若a2b2ab,则ab8、巩固训练1、写出下列命题的逆命题、否命题与逆否命题并判断真假(1)若,则;(2)若,则(3)当时,若,则2、将下列命题改写成“若则”的形式:写出下列命题的逆命题、否命题与逆否命题并判断真假(1)垂直于同一直线的两条直线平行;(2)斜率相等的两条直线平行;(3)钝角的余弦值是负数布置课后作业:【以下数学题讲完新课后写在作业本上】必做题:P8:习题1组第、题12充分条件与必要条件导学案【教学目标】正确理解充分不必要条件、必要不充分条件的概念,充要条件的定义,了解充分而不必要条件, 必要而不充

9、分条件, 既不充分也不必要条件的定义;会判断命题的充分条件、必要条件通过对充分条件、必要条件的概念的理解和运用,培养学生分析、判断和归纳的逻辑思维能力通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育【重点】1充分条件、必要条件的概念2、正确区分充要条件;3、正确运用“条件”的定义解题.【难点】1.判断命题的充分条件、必要条件。2、正确区分充要条件充、分但不必要条件、必要但不充分条件、既不充分也不必要条件;【教学过程】学生探究过程:1、练习与思考引入新课例1:写出下列两个命题的条件和结论,并判断是真命题还是假命题?(1)若x a2 + b2,则

10、x 2ab, (2)若ab 0,则a 0.2、归纳给出定义推断符号“”的定义: 充分条件、必要条件的概念: 3当堂训练 加深理解例2:下列“若p,则q”形式的命题中,那些命题中的p是q的充分条件?(1)若x 1,则x2 4x 3 0;(2)若f(x) x,则f(x)为增函数;(3)若x为无理数,则x2为无理数例3:下列“若p,则q”形式的命题中,那些命题中的q是p的必要条件?若x y,则x2 y2;若两个三角形全等,则这两个三角形的面积相等; (3)若a b,则acbc4.类比归纳定义互为充要条件的概念: 类比定义:充分但不必要条件: 必要但不充分条件: 既不充分也不必要条件: 例4:下列各题

11、中,哪些p是q的充要条件?p:b0,q:函数f(x)ax2bxc是偶函数;p:x 0,y 0,q: xy 0;p: a b ,q: a + c b + c;p:x 5, ,q: x 10p: a b ,q: a2 b2例5:已知:O的半径为r,圆心O到直线l的距离为d求证:dr是直线l与O相切的充要条件例6:设p是r的充分而不必要条件,q是r的充分条件,r成立,则s成立s是q的充分条件,问(1)s是r的什么条件?(2)p是q的什么条件?巩固练习:P10 练习 第1题P10 练习 第2题P10 练习 第3题P10 练习 第4题 题P12 练习第 1题题P12 练习第 2题布置课后作业:【以下数学

12、题讲完新课后写在作业本上】P1:习题1.2A组第1, 2(3), 3题1.3简单的逻辑联结词【教学目标】掌握逻辑联结词“或、且、非”的含义;正确应用逻辑联结词“或、且、非”解决问题;掌握真值表并会应用真值表解决问题【重点】通过数学实例,了解逻辑联结词“或、且、非”的含义,使学生能正确地表述相关数学内容。【难点】1、正确理解命题“Pq”“Pq”“P”真假的规定和判定2、简洁、准确地表述命题“Pq”“Pq”“P”. 【教学过程】学生探究过程:1、思考、分析例1:下列各组命题中,三个命题间有什么关系?(1)12能被3整除; 12能被4整除; 12能被3整除且能被4整除。(2)27是7的倍数; 27是

13、9的倍数; 27是7的倍数或是9的倍数。(3) 35能被5整除; 35不能被5整除;2、归纳定义“且”的含义: “或”的含义: “非”的含义: 3、命题“pq”与命题“pq”“p”的真假的规定你能确定命题“pq”与命题“pq”的真假吗?命题“pq”与命题“pq”的真假和命题p,q的真假之间有什么联系?pqpqpqP真真真真假假假真假假假假一般地,我们规定: 5、例题例2:将下列命题分别用“且”与“或” 联结成新命题“pq” 与“pq”“P”的形式,并判断它们的真假。(1)p:平行四边形的对角线互相平分,q:平行四边形的对角线相等。(2)p:菱形的对角线互相垂直,q:菱形的对角线互相平分;(3)

14、p:35是15的倍数,q:35是7的倍数.例3:选择适当的逻辑联结词“且”或“或”改写下列命题,并判断它们的真假。(1)1既是奇数,又是素数;(2)2是素数且3是素数;(3)22例4:判断下列命题的真假;(1)6是自然数且是偶数(2)是A的子集且是A的真子集;(3)集合A是AB的子集或是AB的子集;(4)周长相等的两个三角形全等或面积相等的两个三角形全等对比归纳:命题的否定与否命题的区别: 5.例题分析例5:写出下表中各给定语的否定语。若给定语为等于大于是都是至多有一个至少有一个其否定语分别为 例6:写出下列命题的否定,判断下列命题的真假(1)p:y sinx 是周期函数;(2)p:32;(3

15、)p:空集是集合A的子集。6巩固练习 17 练习第1题17 练习第2题P20 练习第3题 布置课后作业:【以下数学题讲完新课后写在作业本上】P18:习题.组第1、2、3题14全称量词与存在量词1.4.1全称量词1.4.2存在量词【教学目标】通过生活和数学中的丰富实例理解全称量词与存在量词的含义,熟悉常见的全称量词和存在量词;了解含有量词的全称命题和特称命题的含义,并能用数学符号表示含有量词的命题及.判断其命题的真假性【重点】理解全称量词与存在量词的意义 【难点】全称命题和特称命题的改写及真假的判定的策略.【教学过程】学生探究过程:1思考、分析例1:下列语句是命题吗?假如是命题你能判断它的真假吗

16、?(1)2x是整数;(2)x;(3)如果两个三角形全等,那么它们的对应边相等;(4)平行于同一条直线的两条直线互相平行;(5)北安管理局一中今年所有高中一年级的学生数学课本都是采用人民教育出版社A版的教科书;(6)所有有中国国籍的人都是黄种人;(7)对所有的x, x;(8)对任意一个x,2x是整数。2.发现、归纳全称量词: 全称命题: 存在量词: 特称命题: 常见的全称量词常见的特称量词填写以下表格:文字语言符号语言全称命题特称命题全称命题、特称命题真假判断的策略: 3巩固练习1. P23 练习 第1题2. P23 练习 第1题3:下列全称命题中,真命题是:A. 所有的素数是奇数; B. ;C

17、.; D.4:下列特称命题中,假命题是:A. B.至少有一个能被2和3整除C. 存在两个相交平面垂直于同一直线 D.x2是有理数5:已知:对恒成立,则a的取值范围是 ;变式1:已知:对恒成立,则a的取值范围是 ;6:求函数的值域;变式2:已知:对方程有解,求a的取值范围布置课后作业:【以下数学题讲完新课后写在作业本上】P26习题1.4A组1、2题:143含有一个量词的命题的否定【教学目标】通过探究数学中一些实例,使学生归纳总结出含有一个量词的命题与它们的否定在形式上的变化规律通过例题和习题的教学,使学生能够根据含有一个量词的命题与它们的否定在形式上的变化规律,正确地对含有一个量词的命题进行否定

18、使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质【重点】通过探究,了解含有一个量词的命题与它们的否定在形式上的变化规律,会正确地对含有一个量词的命题进行否定【难点】正确地对含有一个量词的命题进行否定【教学过程】学生探究过程:1回顾我们在上一节中学习过逻辑联结词“非”对给定的命题p ,如何得到命题p 的否定(或非p ),它们的真假性之间有何联系? 2思考、分析例1:判断下列命题是全称命题还是特称命题,你能写出下列命题的否定吗?(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)xR, x22x10。(4)有些实数

19、的绝对值是正数;(5)某些平行四边形是菱形;(6) xR, x210。3发现、归纳规律全称命题此全称命题的否定特称命题此特称命题的否定4巩固练习判断下列命题是全称命题还是特称命题,并写出它们的否定:p:所有能被3整除的整数都是奇数;p:每一个四边形的四个顶点共圆;p:对xZ,x2个位数字不等于3;p: xR, x22x20;p:有的三角形是等边三角形;p:有一个素数含三个正因数。布置课后作业:【以下数学题讲完新课后写在作业本上】P26习题1.4A组第3题:B组(1)(2)(3)(4)课时作业(数学专题:常用逻辑用语)12014北京卷 设a,b是实数,则“ab”是“a2b2”的()A充分而不必要

20、条件 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件2. “|a|0”是“a0”的()A充分不必要条件B必要不充分条件 C充要条件 D既不充分也不必要条件3“a1”是“eq f(1,a)1”的()A充分必要条件B充分不必要条件 C必要不充分条D既非充分也非必要条件4命题“若x21,则1x1”的逆否命题是()A若x21,则x1或x1 B若1x1,则x21或x1 D若x1或x1,则x215设x,yR,则“x2且y2”是“x2y24”的()A充分而不必要条 B必要而不充分条件 C充分必要条件 D既不充分也不必要条件6已知p:a0,q:ab0,则p是q的()A充分不必要条件 B必要不充分条

21、件 C充要条件 D既不充分也不必要条件7设M、N是两个集合,则“MN”是“MN”的()A充分不必要条件B必要不充分条件 C充分必要条件 D既不充分又不必要条件8若x,yR,则下列命题中,甲是乙的充分不必要条件的是()A甲:xy0乙:x2y20 B甲:xy0乙:|x|y|xy|C甲:xy0乙:x、y至少有一个为零 D甲:xy乙:eq f(x,y)y0”是“eq f(1,x)eq f(1,y)”的_条件12.“tan 1”是“eq f(,4)”的_条件13如果对于任意实数x,x表示不小于x的最小整数,例如1.12,1.11,那么“|xy|1”是“xy”的_条件14已知A为xOy平面内的一个区域命题

22、甲:点(a,b)(x,y)|eq blcrc (avs4alco1(xy20,,x0,,3xy60);命题乙:点(a,b)A.如果甲是乙的充分条件,那么区域A的面积的最小值是_15“aeq f(1,4)”是“对任意的正数x,均有xeq f(a,x)1”的_条件16已知命题p:|x2|0),命题q:|x24|13、今节课我们来学习双曲线的另一定义。(板书课题:双曲线第二定义)二、新课教学: 1、引例(课本P64例6):点M(x,y) 与定点F(5,0)距离和它到定直线的距离之比是常数,求点M的轨迹方程.分析:利用求轨迹方程的方法。F2F1HHxoy解:设是点M到直线的距离,根据题意,所求轨迹就是

23、集合P=M|, 即 所以,点M的轨迹是实轴、虚轴长分别为8、6的双曲线。由例6可知:定点F(5,0)为该双曲线的焦点,定直线为,常数为离心率1.提出问题:(从特殊到一般)将上题改为:点M(x,y)与定点F(c,0)距离和它到定直线的距离之比是常数,求点M的轨迹方程。解:设是点M到直线的距离, 根据题意,所求轨迹就是集合P=M|, 即 化简得两边同时除以得2、小结: 双曲线第二定义:当动点M(x,y) 到一定点F(c,0)的距离和它到一定直线的距离之比是常数时,这个动点M(x,y)的轨迹是双曲线。其中定点F(c,0)是双曲线的一个焦点,定直线叫双曲线的一条准线,常数e是双曲线的离心率。双曲线上任

24、一点到焦点的线段称为焦半径。例如PF是双曲线的焦半径。(P65思考)与椭圆的第二定义比较,你有什么发现?(让学生讨论)答:只是常数的取值范围不同,椭圆的,而双曲线的.三、课堂练习求的准线方程、两准线间的距离。 解:由可知,焦点在x轴上,且所以准线方程为:;故两准线的距离为.2、(2006年广东高考第8题选择题)已知双曲线 3x 2y 2 = 9,则双曲线右支上的点 P 到右焦点的距离与点 P 到右准线的距离之比等于( )。(A) EQ R(2) (B) EQ F(2R(3),3) (C) 2(D) 4解:3、如果双曲线上的一点P到左焦点的距离为9,则P到右准线的距离是 解: P到左准线的距离为

25、m,由双曲线方程可知a=5,b=12,c=13,准线方程为 根据双曲线第二定义得, 。4、双曲线两准线把两焦点连线段三等分,求e. 解:由题意可知,即 所以5. 双曲线的 ,渐近线与一条准线围成的三角形的面积是 . 解:由题意可知,一条准线方程为:,渐近线方程为 因为当时 所以所求的三角形面积为: 四、巩固练习:1已知双曲线= 1(a0,b0)的右焦点为F,右准线与一条渐近线交于A,OAF面积为(O为原点),则两条渐近线夹角为( )A30B45C60D90解:由题意可得,OAF 的底边|OC|=c,高h= SOAF=因此可知该双曲线为等轴双曲线。所以两条渐近线夹角为90。2.PPHHF2xF1

26、oyA 。五、教学反思:(1) 知识内容:双曲线的第二定义及应用。(2) 数学方法:类比法,(3) 数学思想: 从特殊到一般六、作业: 1、双曲线的一条准线是y=1,则的值。2、求渐近线方程是4x,准线方程是5y的双曲线方程3、已知双曲线的离心率为2,准线方程为,焦点F(2,0),求双曲线标准方程.4、(请你编题)若双曲线标准方程为上一点p到(左,右)焦点的距离是则点p到(左, 右)准线的距离.七、板书设计课题:双曲线的第二定义及应用复习引入(1)、双曲线的定义(2)、双曲线的标准方程 (3)、关于焦点在x轴上的双曲线的有关性质新内容双曲线第二定义:例题:课堂练习:1、2、3、4、5、课后练习

27、:1、2、作业:1、 2、 3、 4、2.4抛物线一 教学设想2 3 1抛物线及标准方程(1) 教具的准备问题1:同学们对抛物线已有了哪些认识?在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?问题2:在二次函数中研究的抛物线有什么特征?在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.通过提问来激发学生的探究欲望,首先研究抛物线的定义,教师可以用直观的教具叫学生参与进行演示,再由学生归纳出抛

28、物线的定义(2) 抛物线的标准方程设定点F到定直线l的距离为p(p为已知数且大于0)下面,我们来求抛物线的方程怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的方案方案1:(由第一组同学完成,请一优等生演板)以l为y轴,过点F与直线l垂直的直线为x轴建立直角坐标系(图2-30)设定点F(p,0),动点M的坐标为(x,y),过M作MDy轴于D,抛物线的集合为:p=M|MF|=|MD|化简后得:y2=2px-p2(p0)方案2:(由第二组同学完成,请一优等生演板)以定点F为原点,平行l的直线为y轴建立直角坐标系(图2-31)设动点

29、M的坐标为(x,y),且设直线l的方程为x=-p,定点F(0,0),过M作MDl于D,抛物线的集合为:p=M|MF|=|MD|化简得:y2=2px+p2(p0)方案3:(由第三、四组同学完成,请一优等生演板)取过焦点F且垂直于准线l的直线为x轴,x轴与l交于K,以线段KF的垂直平分线为y轴,建立直角坐标系(图2-32) 抛物线上的点M(x,y)到l的距离为d,抛物线是集合p=M|MF|=d化简后得:y2=2px(p0)例题讲解与引申教材中选取了2个例题,例1是让学生会应用公式求抛物线的焦点坐标和准线方程。例2是应用方面的问题,关键是由题意设出抛物线的方程即可。2。 3 2 抛物线的几何性质抛物

30、线的几何性质下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p0)出发来研究它的几何性质(二)几何性质怎样由抛物线的标准方程确定它的几何性质?以y2=2px(p0)为例,用小黑板给出下表,请学生对比、研究和填写例题的讲解与引申 例3有2种解法;解法一运用了抛物线的重要性质:抛物线上任一点到焦点的距离(即此点的焦半径)等于此点到准线的距离可得焦半径公式设P(x0,这个性质在解决许多有关焦点的弦的问题中经常用到,因此必须熟练掌握(2)由焦半径不难得出焦点弦长公式:设AB是过抛物线焦点的一条弦(焦点弦),若A(x1,y1)、B(x2,y2)则有|AB|=x1+x2+p特别地:当A

31、Bx轴,抛物线的通径|AB|=2p例4涉及直线与圆锥曲线相交时,常把直线与圆锥曲线方程联立,消去一个变量,得到关于另一变量的一元二次方程,然后用韦达定理求解,这是解决这类问题的一种常用方法附 教学教案2.4.1抛物线及标准方程 知识与技能目标使学生掌握抛物线的定义、抛物线的标准方程及其推导过程要求学生进一步熟练掌握解析几何的基本思想方法,提高分析、对比、概括、转化等方面的能力过程与方法目标情感,态度与价值观目标(1)培养学生用对称的美学思维来体现数学的和谐美。(2)培养学生观察,实验,探究与交流的数学活动能力。能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养; (2)启发学生能够

32、发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力复习与引入过程回忆平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,当0e1时是椭圆,当e1时是双曲线,那么当e=1时,它又是什么曲线?2简单实验如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样

33、铅笔就描出一条曲线,这条曲线叫做抛物线反复演示后,请同学们来归纳抛物线的定义,教师总结新课讲授过程(i)由上面的探究过程得出抛物线的定义板书平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(ii) 抛物线标准方程的推导过程引导学生分析出:方案3中得出的方程作为抛物线的标准方程这是因为这个方程不仅具有较简的形式,而方程中的系数有明确的几何意义:一次项系数是焦点到准线距离的2倍由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):将上表画在小黑板上,讲解时出示小黑板,并讲清为什么会出现四

34、种不同的情形,四种情形中P0;并指出图形的位置特征和方程的形式应结合起来记忆即:当对称轴为x轴时,方程等号右端为2px,相应地左端为y2;当对称轴为y轴时,方程等号的右端为2py,相应地左端为x2同时注意:当焦点在正半轴上时,取正号;当焦点在负半轴上时,取负号(iii)例题讲解与引申已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程已知抛物线的焦点是F(0,-2),求它的标准方程解 因为p=3,所以抛物线的焦点坐标是(3/2,0)准线方程是x=-3/2 因为抛物线的焦点在轴的负半轴上,且p/2=2,p=4,所以抛物线的标准方程是x2=-8y例2一种卫星接收天线的轴截面如图所示。卫星拨束

35、近似平行状态社如轴截面为抛物线的接受天线,经反射聚焦到焦点处。已知接收天线的口径为4.8m深度为0.5m,求抛物线的标准方程和焦点坐标。解;设抛物线的标准方程是y2=2px (p0)。有已知条件可得,点A的坐标是(0.5,2.4)代入方程,得2.4=2p*0.5即=5.76所以,抛物线的标准方程是y2=11.52x,焦点坐标是(2.88,0)练习:第72页1、2、3、作业:第78页1、2、3、4、2.4.2 抛物线的几何性质知识与技能目标使学生理解并掌握抛物线的几何性质,并能从抛物线的标准方程出发,推导这些性质从抛物线的标准方程出发,推导抛物线的性质,从而培养学生分析、归纳、推理等能力过程与方

36、法目标复习与引入过程1抛物线的定义是什么?请一同学回答应为:“平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线”2抛物线的标准方程是什么?再请一同学回答应为:抛物线的标准方程是y2=2px(p0),y2=-2px(p0),x2=2py(p0)和x2=-2py(p0)下面我们类比椭圆、双曲线的几何性质,从抛物线的标准方程y2=2px(p0)出发来研究它的几何性质板书抛物线的几何性质(2)新课讲授过程(i)抛物线的几何性质通过和椭圆、双曲线的几何性质相比,抛物线的几何性质有什么特点?学生和教师共同小结:(1)抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但是没有渐近线(2)抛物线

37、只有一条对称轴,这条对称轴垂直于抛物线的准线或与顶点和焦点的连线重合,抛物线没有中心(3)抛物线只有一个顶点,它是焦点和焦点在准线上射影的中点(4)抛物线的离心率要联系椭圆、双曲线的第二定义,并和抛物线的定义作比较其结果是应规定抛物线的离心率为1注意:这样不仅引入了抛物线离心率的概念,而且把圆锥曲线作为点的轨迹统一起来了(ii)例题讲解与引申例题3 已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值解法一:由焦半径关系,设抛物线方程为y2=-2px(p0),则准线方因为抛物线上的点M(-3,m)到焦点的距离|MF|与到准线的距离得p=4因

38、此,所求抛物线方程为y2=-8x又点M(-3,m)在此抛物线上,故m2=-8(-3)解法二:由题设列两个方程,可求得p和m由学生演板由题意在抛物线上且|MF|=5,故例4 过抛物线y2=2px(p0)的焦点F的一条直线与这抛物线相交于A、B两点,且A(x1,y1)、B(x2,y2)(图2-34)证明:(1)当AB与x轴不垂直时,设AB方程为:此方程的两根y1、y2分别是A、B两点的纵坐标,则有y1y2=-p2或y1=-p,y2=p,故y1y2=-p2综合上述有y1y2=-p2又A(x1,y1)、B(x2,y2)是抛物线上的两点,练习:第78页:1、2、3、4、作业:5、6、72.1.1曲线与方

39、程2.1.2求曲线的轨迹方程【教学目标】使学生掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养学生综合运用各方面知识的能力【重点】:求动点的轨迹方程的常用技巧与方法【难点】:作相关点法求动点的轨迹方法【教学过程】学生探究过程:(一)复习引入大家知道,平面解析几何研究的主要问题是:(1)根据已知条件,求出表示平面曲线的方程;(2)通过方程,研究平面曲线的性质我们已经对常见曲线圆、椭圆、双曲线以及抛物线进行过这两个方面的研究,今天在上面已经研究的基础上来对根据已知条件求曲线的轨迹方程的常见技巧与方法进行系统分析(二)几种常见求轨迹方程的方法1相

40、关点法由题设所给(或通过分析图形的几何性质而得出)的动点所满足的几何条件列出等式,再用坐标代替这等式,化简得曲线的方程,这种方法叫相关点法例1:(1)求和定圆的圆周的距离等于R的动点P的轨迹方程;(2)过点A(4,o)作圆O (4Ro)的割线,求割线被圆O截得弦的中点的轨迹2定义法利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件直平分线l交半径OQ于点P(见图245),当Q点在圆周上运动时,求点P的轨迹方程分析:点P在AQ的垂直平分线上

41、,|PQ|=|PA|又P在半径OQ上|PO|+|PQ|=R,即|PO|+|PA|=R故P点到两定点距离之和是定值,可用椭圆定义写出P点的轨迹方程解:连接PA lPQ,|PA|=|PQ|又P在半径OQ上|PO|+|PQ|=2由椭圆定义可知:P点轨迹是以O、A为焦点的椭圆3相关点法若动点P(x,y)随已知曲线上的点Q(x0,y0)的变动而变动,且x0、y0可用x、y表示,则将Q点坐标表达式代入已知曲线方程,即得点P的轨迹方程这种方法称为相关点法(或代换法)例3 已知抛物线y2=x+1,定点A(3,1)、B为抛物线上任意一点,点P在线段AB上,且有BPPA=12,当B点在抛物线上变动时,求点P的轨迹

42、方程分析:P点运动的原因是B点在抛物线上运动,因此B可作为相关点,应先找出点P与点B的联系解:设点P(x,y),且设点B(x0,y0)BPPA=12,且P为线段AB的内分点4待定系数法求圆、椭圆、双曲线以及抛物线的方程常用待定系数法求例4 已知抛物线y2=4x和以坐标轴为对称轴、实轴在y轴上的双曲曲线方程分析:因为双曲线以坐标轴为对称轴,实轴在y轴上,所以可设双曲线方ax2-4b2x+a2b2=0抛物线和双曲线仅有两个公共点,根据它们的对称性,这两个点的横坐标应相等,因此方程ax2-4b2x+a2b2=0应有等根=1664-4Q4b2=0,即a2=2b(以下由学生完成)由弦长公式得:即a2b2

43、=4b2-a2(三)巩固练习用十多分钟时间作一个小测验,检查一下教学效果练习题用一小黑板给出1ABC一边的两个端点是B(0,6)和C(0,-6),另两边斜率的2点P与一定点F(2,0)的距离和它到一定直线x=8的距离的比是12,求点P的轨迹方程,并说明轨迹是什么图形?3求抛物线y2=2px(p0)上各点与焦点连线的中点的轨迹方程答案:义法)由中点坐标公式得:(四)、教学反思求曲线的轨迹方程一般地有直接法、定义法、相关点法、待定系数法,还有参数法、复数法也是求曲线的轨迹方程的常见方法,这等到讲了参数方程、复数以后再作介绍五、布置作业1两定点的距离为6,点M到这两个定点的距离的平方和为26,求点M

44、的轨迹方程2动点P到点F1(1,0)的距离比它到F2(3,0)的距离少2,求P点的轨迹3已知圆x2+y2=4上有定点A(2,0),过定点A作弦AB,并延长到点P,使3|AB|=2|AB|,求动点P的轨迹方程作业答案:1以两定点A、B所在直线为x轴,线段AB的垂直平分线为y轴建立直角坐标系,得点M的轨迹方程x2+y2=42|PF2|-|PF|=2,且|F1F2|P点只能在x轴上且x1,轨迹是一条射线六、板书设计第三章 空间向量与立体几何3.1空间向量及其运算(一)教学目标:知识目标:空间向量;相等的向量;空间向量的加减与数乘运算及运算律;能力目标:理解空间向量的概念,掌握其表示方法;会用图形说明

45、空间向量加法、减法、数乘向量及它们的运算律;能用空间向量的运算意义及运算律解决简单的立体几何中的问题德育目标:学会用发展的眼光看问题,认识到事物都是在不断的发展、进化的,会用联系的观点看待事物教学重点:空间向量的加减与数乘运算及运算律教学难点:应用向量解决立体几何问题教学方法:讨论式教学过程: .复习引入师在必修四第二章平面向量中,我们学习了有关平面向量的一些知识,什么叫做向量?向量是怎样表示的呢?生既有大小又有方向的量叫向量向量的表示方法有:用有向线段表示;用字母a、b等表示;用有向线段的起点与终点字母:师数学上所说的向量是自由向量,也就是说在保持向量的方向、大小的前提下可以将向量进行平移,

46、由此我们可以得出向量相等的概念,请同学们回忆一下生长度相等且方向相同的向量叫相等向量.师学习了向量的有关概念以后,我们学习了向量的加减以及数乘向量运算:向量的加法:向量的减法:实数与向量的积:实数与向量a的积是一个向量,记作a,其长度和方向规定如下:(1)|a|a|(2)当0时,a与a同向; 当0时,a与a反向; 当0时,a0.师关于向量的以上几种运算,请同学们回忆一下,有哪些运算律呢?生向量加法和数乘向量满足以下运算律加法交换律:abba加法结合律:(ab)ca(bc)数乘分配律:(ab)ab师今天我们将在必修四第二章平面向量的基础上,类比地引入空间向量的概念、表示方法、相同或向等关系、空间

47、向量的加法、减法、数乘以及这三种运算的运算率,并进行一些简单的应用请同学们阅读课本P26P27.新课讲授师如同平面向量的概念,我们把空间中具有大小和方向的量叫做向量例如空间的一个平移就是一个向量那么我们怎样表示空间向量呢?相等的向量又是怎样表示的呢?生与平面向量一样,空间向量也用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量师由以上知识可知,向量在空间中是可以平移的空间任意两个向量都可以用同一平面内的两条有向线段表示因此我们说空间任意两个向量是共面的师空间向量的加法、减法、数乘向量各是怎样定义的呢?生空间向量的加法、减法、数乘向量的定义与平面向量的运算一样:=a+b,(指向被减

48、向量),a 师空间向量的加法与数乘向量有哪些运算律呢?请大家验证这些运算律生空间向量加法与数乘向量有如下运算律:加法交换律:a + b = b + a;加法结合律:(a + b) + c =a + (b + c);(课件验证)数乘分配律:(a + b) =a +b师空间向量加法的运算律要注意以下几点:首尾相接的若干向量之和,等于由起始向量的起点指向末尾向量的终点的向量即:因此,求空间若干向量之和时,可通过平移使它们转化为首尾相接的向量首尾相接的若干向量若构成一个封闭图形,则它们的和为零向量即:两个向量相加的平行四边形法则在空间仍然成立因此,求始点相同的两个向量之和时,可以考虑用平行四边形法则例

49、已知平行六面体(如图),化简下列向量表达式,并标出化简结果的向量:说明:平行四边形ABCD平移向量 a 到ABCD的轨迹所形成的几何体,叫做平行六面体记作ABCDABCD平行六面体的六个面都是平行四边形,每个面的边叫做平行六面体的棱解:(见课本P27)说明:由第2小题可知,始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量,这是平面向量加法的平行四边形法则向空间的推广.巩固练习课本P92练习. 教学反思平面向量仅限于研究平面图形在它所在的平面内的平移,而空间向量研究的是空间的平移,它们的共同点都是指“将图形上所有点沿相同的方向移动相

50、同的长度”,空间的平移包含平面的平移关于向量算式的化简,要注意解题格式、步骤和方法.课后作业课本P106 1、2、预习课本P92P96,预习提纲: 怎样的向量叫做共线向量?两个向量共线的充要条件是什么?空间中点在直线上的充要条件是什么?什么叫做空间直线的向量参数表示式?怎样的向量叫做共面向量?向量p与不共线向量a、b共面的充要条件是什么?空间一点P在平面MAB内的充要条件是什么?板书设计:9.5 空间向量及其运算(一)平面向量复习 二、空间向量 三、例1定义及表示方法 定义及表示加减与数乘运算 加减与数乘向量 小结运算律 运算律教学后记:空间向量及其运算(2)一、课题:空间向量及其运算(2)

51、二、教学目标:1理解共线向量定理和共面向量定理及它们的推论;2掌握空间直线、空间平面的向量参数方程和线段中点的向量公式三、教学重、难点:共线、共面定理及其应用四、教学过程:(一)复习:空间向量的概念及表示;(二)新课讲解:1共线(平行)向量:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。读作:平行于,记作:2共线向量定理:对空间任意两个向量的充要条件是存在实数,使(唯一)推论:如果为经过已知点,且平行于已知向量的直线,那么对任一点,点在直线上的充要条件是存在实数,满足等式,其中向量叫做直线的方向向量。在上取,则式可化为或当时,点是线段的中点,此时和都叫空

52、间直线的向量参数方程,是线段的中点公式3向量与平面平行:已知平面和向量,作,如果直线平行于或在内,那么我们说向量平行于平面,记作:通常我们把平行于同一平面的向量,叫做共面向量说明:空间任意的两向量都是共面的4共面向量定理:如果两个向量不共线,与向量共面的充要条件是存在实数使推论:空间一点位于平面内的充分必要条件是存在有序实数对,使或对空间任一点,有上面式叫做平面的向量表达式(三)例题分析:例1已知三点不共线,对平面外任一点,满足条件,试判断:点与是否一定共面?解:由题意:,即,所以,点与共面说明:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形

53、式将已知条件进行转化运算【练习】:对空间任一点和不共线的三点,问满足向量式 (其中)的四点是否共面?解:,点与点共面例2已知,从平面外一点引向量,(1)求证:四点共面;(2)平面平面解:(1)四边形是平行四边形,共面;(2),又,所以,平面平面五、课堂练习:课本第96页练习第1、2、3题六、课堂小结:1共线向量定理和共面向量定理及其推论;2空间直线、平面的向量参数方程和线段中点向量公式七、作业:1已知两个非零向量不共线,如果,求证:共面2已知,若,求实数的值。3如图,分别为正方体的棱的中点,求证:(1)四点共面;(2)平面平面4已知分别是空间四边形边的中点,(1)用向量法证明:四点共面;(2)

54、用向量法证明:平面3.1.3空间向量的数量积(1)教学目标:1掌握空间向量夹角和模的概念及表示方法;2掌握两个向量的数量积的计算方法,并能利用两个向量的数量积解决立体几何中的一些简单问题。教学重、难点:空间数量积的计算方法、几何意义、立体几何问题的转化。 教具准备:与教材内容相关的资料。教学设想:激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神教学过程学生探究过程:(一)复习:空间向量基本定理及其推论;(二)新课讲解:1空间向量的夹角及其表示:已知两非零向量,在空间任取一点,作,则叫做向量与的夹角,记作;且规定,显然有;若,则称与互相垂直,记作:;2向量的模:设,则

55、有向线段的长度叫做向量的长度或模,记作:;3向量的数量积:已知向量,则叫做的数量积,记作,即已知向量和轴,是上与同方向的单位向量,作点在上的射影,作点在上的射影,则叫做向量在轴上或在上的正射影;可以证明的长度4空间向量数量积的性质: (1)(2)(3)5空间向量数量积运算律:(1)(2)(交换律)(3)(分配律)(三)例题分析:例1用向量方法证明:直线和平面垂直的判定定理。已知:是平面内的两条相交直线,直线与平面的交点为,且求证:证明:在内作不与重合的任一直线,在上取非零向量,相交,向量不平行,由共面定理可知,存在唯一有序实数对,使,又,所以,直线垂直于平面内的任意一条直线,即得例2已知空间四

56、边形中,求证:证明:(法一) (法二)选取一组基底,设,即,同理:,即说明:用向量解几何题的一般方法:把线段或角度转化为向量表示,并用已知向量表示未知向量,然后通过向量运算取计算或证明。例3如图,在空间四边形中,求与的夹角的余弦值。解:, ,所以,与的夹角的余弦值为说明:由图形知向量的夹角时易出错,如易错写成,切记!五巩固练习:课本第99页练习第1、2、3题。六教学反思:空间向量数量积的概念和性质。七作业:课本第106页第3、4题补充:1已知向量,向量与的夹角都是,且,试求:(1);(2);(3)向量的数量积(2)一、教学目标:向量的数量积运算利用向量的数量积运算判定垂直、求模、求角二、教学重

57、点:向量的数量积运算利用向量的数量积运算判定垂直、求模、求角三、教学方法:练习法,纠错法,归纳法四、教学过程:考点一:向量的数量积运算(一)、知识要点:1)定义: 设=,则 (的范围为 )设,则 。注:不能写成,或 的结果为一个数值。2)投影:在方向上的投影为 。3)向量数量积运算律: 注:没有结合律二)例题讲练1、下列命题:若,则,中至少一个为若且,则中正确有个数为 ( )A. 0个 B. 1个 C. 2个 D. 3个2、已知中,A,B,C所对的边为a,b,c,且a=3,b=1,C=30,则= 。3、若,满足,且,则= 。4、已知,且与的夹角为,则在上的投影为 。考点二:向量数量积性质应用一

58、)、知识要点: (用于判定垂直问题)(用于求模运算问题)(用于求角运算问题)二)例题讲练1、已知,且与的夹角为,求当m为何值时2、已知,则 。3、已知和是非零向量,且=,求与的夹角4、已知,且和不共线,求使与的夹角是锐角时的取值范围巩固练习1、已知和是两个单位向量,夹角为,则()等于( )A.-8 B. C. D.82、已知和是两个单位向量,夹角为,则下面向量中与垂直的是( ) A. B. C. D. 3、在中,设,若,则( ) 直角三角形 锐角三角形 钝角三角形 无法判定4、已知和是非零向量,且与垂直,与垂直,求与的夹角。5、已知、是非零的单位向量,且+=,求证:为正三角形。3.1.5空间向

59、量运算的坐标表示课题向量的坐标 教学目的要求1理解空间向量与有序数组之间的1-1对应关系 2掌握投影定理、分向量及方向余弦的坐标表示主要内容与时间分配1投影与投影定理 25分钟2分向量与向量的坐标 30分钟3模与方向余弦的坐标表示 35分钟重点难点1投影定理2分向量3方向余弦的坐标表示教学方法和手段启发式教学法,使用电子教案一、向量在轴上的投影1几个概念(1) 轴上有向线段的值:设有一轴,是轴上的有向线段,如果数满足,且当与轴同向时是正的,当与轴反向时是负的,那么数叫做轴上有向线段的值,记做AB,即。设e是与轴同方向的单位向量,则设A、B、C是u轴上任意三点,不论三点的相互位置如何,总有两向量

60、夹角的概念:设有两个非零向量和b,任取空间一点O,作,规定不超过的称为向量和b的夹角,记为空间一点A在轴上的投影:通过点A作轴的垂直平面,该平面与轴的交点叫做点A在轴上的投影。向量在轴上的投影:设已知向量的起点A和终点B在轴上的投影分别为点和,那么轴上的有向线段的值叫做向量在轴上的投影,记做。2投影定理性质1:向量在轴上的投影等于向量的模乘以轴与向量的夹角的余弦:性质2:两个向量的和在轴上的投影等于两个向量在该轴上的投影的和,即 性质3:向量与数的乘法在轴上的投影等于向量在轴上的投影与数的乘法。即二、向量在坐标系上的分向量与向量的坐标1向量在坐标系上的分向量与向量的坐标通过坐标法,使平面上或空

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论