2022届上海华东师大三附中高三下学期第六次检测数学试卷含解析_第1页
2022届上海华东师大三附中高三下学期第六次检测数学试卷含解析_第2页
2022届上海华东师大三附中高三下学期第六次检测数学试卷含解析_第3页
2022届上海华东师大三附中高三下学期第六次检测数学试卷含解析_第4页
2022届上海华东师大三附中高三下学期第六次检测数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( )ABCD2函数在内有

2、且只有一个零点,则a的值为( )A3B3C2D23若复数满足(是虚数单位),则( )ABCD4现有甲、乙、丙、丁4名学生平均分成两个志愿者小组到校外参加两项活动,则乙、丙两人恰好参加同一项活动的概率为ABCD5已知集合则( )ABCD6函数的部分图象大致为( )ABCD7若函数有且仅有一个零点,则实数的值为( )ABCD8某四棱锥的三视图如图所示,则该四棱锥的表面积为( )A8BCD9某人用随机模拟的方法估计无理数的值,做法如下:首先在平面直角坐标系中,过点作轴的垂线与曲线相交于点,过作轴的垂线与轴相交于点(如图),然后向矩形内投入粒豆子,并统计出这些豆子在曲线上方的有粒,则无理数的估计值是(

3、 ) ABCD10已知复数为虚数单位) ,则z 的虚部为( )A2BC4D11中国古代数学著作孙子算经中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( )ABCD12若点是角的终边上一点,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图所示,在直角梯形中,、分别是、上的点,且(如图).将四边形沿折起,连接、(如图).在折起的过程中,则下列表述: 平面;四点、可能共面;若,则平面平面;平面与平面可能垂直.

4、其中正确的是_.14集合,则_.15设全集,则_.16的展开式中,的系数为_(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数()若,求曲线在点处的切线方程;()若在上恒成立,求实数的取值范围;()若数列的前项和,求证:数列的前项和.18(12分)在,角、所对的边分别为、,已知.(1)求的值;(2)若,边上的中线,求的面积.19(12分)已知二阶矩阵A=abcd,矩阵A属于特征值1=-1的一个特征向量为1=1-1,属于特征值2=4的一个特征向量为2=32.求矩阵A.20(12分)如图,在三棱锥中,平面平面,、分别为、中点(1)求证:;(2)求二

5、面角的大小21(12分)已知函数.(1)当时,判断在上的单调性并加以证明;(2)若,求的取值范围.22(10分)已知,.(1)解;(2)若,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属

6、于基础题.2A【解析】求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,在单调递增,且,在不存在零点;若,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.3B【解析】利用复数乘法运算化简,由此求得.【详解】依题意,所以.故选:B【点睛】本小题主要考查复数的乘法运算,考查复数模的计算,属于基础题.4B【解析】求得基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,利用古典概型及其概率的计算公式,即可求解.【详解】由题意,现有甲乙丙丁4名学生平均分成两个志

7、愿者小组到校外参加两项活动,基本事件的总数为,其中乙丙两人恰好参加同一项活动的基本事件个数为,所以乙丙两人恰好参加同一项活动的概率为,故选B.【点睛】本题主要考查了排列组合的应用,以及古典概型及其概率的计算问题,其中解答中合理应用排列、组合的知识求得基本事件的总数和所求事件所包含的基本事件的个数,利用古典概型及其概率的计算公式求解是解答的关键,着重考查了运算与求解能力,属于基础题.5B【解析】解对数不等式可得集合A,由交集运算即可求解.【详解】集合解得由集合交集运算可得,故选:B.【点睛】本题考查了集合交集的简单运算,对数不等式解法,属于基础题.6B【解析】图像分析采用排除法,利用奇偶性判断函

8、数为奇函数,再利用特值确定函数的正负情况。【详解】,故奇函数,四个图像均符合。当时,排除C、D当时,排除A。故选B。【点睛】图像分析采用排除法,一般可供判断的主要有:奇偶性、周期性、单调性、及特殊值。7D【解析】推导出函数的图象关于直线对称,由题意得出,进而可求得实数的值,并对的值进行检验,即可得出结果.【详解】,则,所以,函数的图象关于直线对称.若函数的零点不为,则该函数的零点必成对出现,不合题意.所以,即,解得或.当时,令,得,作出函数与函数的图象如下图所示:此时,函数与函数的图象有三个交点,不合乎题意;当时,当且仅当时,等号成立,则函数有且只有一个零点.综上所述,.故选:D.【点睛】本题

9、考查利用函数的零点个数求参数,考查函数图象对称性的应用,解答的关键就是推导出,在求出参数后要对参数的值进行检验,考查分析问题和解决问题的能力,属于中等题.8D【解析】根据三视图还原几何体为四棱锥,即可求出几何体的表面积【详解】由三视图知几何体是四棱锥,如图,且四棱锥的一条侧棱与底面垂直,四棱锥的底面是正方形,边长为2,棱锥的高为2,所以,故选:【点睛】本题主要考查了由三视图还原几何体,棱锥表面积的计算,考查了学生的运算能力,属于中档题.9D【解析】利用定积分计算出矩形中位于曲线上方区域的面积,进而利用几何概型的概率公式得出关于的等式,解出的表达式即可.【详解】在函数的解析式中,令,可得,则点,

10、直线的方程为,矩形中位于曲线上方区域的面积为,矩形的面积为,由几何概型的概率公式得,所以,.故选:D.【点睛】本题考查利用随机模拟的思想估算的值,考查了几何概型概率公式的应用,同时也考查了利用定积分计算平面区域的面积,考查计算能力,属于中等题.10A【解析】对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z 的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.11C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.12A【解析】根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三

11、角函数的定义,可得,则,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】连接、交于点,取的中点,证明四边形为平行四边形,可判断命题的正误;利用线面平行的性质定理和空间平行线的传递性可判断命题的正误;连接,证明出,结合线面垂直和面面垂直的判定定理可判断命题的正误;假设平面与平面垂直,利用面面垂直的性质定理可判断命题的正误.综合可得出结论.【详解】对于命题,连接、交于点,取的中点、,连接、,如下图所示:

12、则且,四边形是矩形,且,为的中点,为的中点,且,且,四边形为平行四边形,即,平面,平面,平面,命题正确;对于命题,平面,平面,平面,若四点、共面,则这四点可确定平面,则,平面平面,由线面平行的性质定理可得,则,但四边形为梯形且、为两腰,与相交,矛盾.所以,命题错误;对于命题,连接、,设,则,在中,则为等腰直角三角形,且,且,由余弦定理得,又,平面,平面,、为平面内的两条相交直线,所以,平面,平面,平面平面,命题正确;对于命题,假设平面与平面垂直,过点在平面内作,平面平面,平面平面,平面,平面,平面,又,平面,平面,.,平面,平面,.,显然与不垂直,命题错误.故答案为:.【点睛】本题考查立体几何

13、综合问题,涉及线面平行、面面垂直的证明、以及点共面的判断,考查推理能力,属于中等题.14【解析】分析出集合A为奇数构成的集合,即可求得交集.【详解】因为表示为奇数,故.故答案为:【点睛】此题考查求集合的交集,根据已知集合求解,属于简单题.15【解析】先求出集合,然后根据交集、补集的定义求解即可【详解】解:,或;故答案为:【点睛】本题主要考查集合的交集、补集运算,属于基础题1660【解析】根据二项式定理展开式通项,即可求得的系数.【详解】因为,所以,则所求项的系数为.故答案为:60【点睛】本题考查了二项展开式通项公式的应用,指定项系数的求法,属于基础题.三、解答题:共70分。解答应写出文字说明、

14、证明过程或演算步骤。17 ();();()证明见解析.【解析】试题分析:将,求出切线方程求导后讨论当时和时的单调性证明,求出实数的取值范围先求出、的通项公式,利用当时,得,下面证明:解析:()因为,所以,切点为.由,所以,所以曲线在处的切线方程为,即()由,令,则(当且仅当取等号).故在上为增函数.当时,,故在上为增函数,所以恒成立,故符合题意;当时,由于,根据零点存在定理,必存在,使得,由于在上为增函数,故当时,,故在上为减函数, 所以当时,,故在上不恒成立,所以不符合题意.综上所述,实数的取值范围为(III)证明:由由()知当时,故当时, 故,故.下面证明:因为而,所以,即:点睛:本题考查

15、了利用导数的几何意义求出参数及证明不等式成立,借助第二问的证明过程,利用导数的单调性证明数列的不等式,在求解的过程中还要求出数列的和,计算较为复杂,本题属于难题18 (1) (2)答案不唯一,见解析【解析】(1)由题意根据和差角的三角函数公式可得,再根据同角三角函数基本关系可得的值;(2)在中,由余弦定理可得,解方程分别由三角形面积公式可得答案【详解】解:(1)在中,因为,又已知,所以,因为,所以,于是.所以.(2)在中,由余弦定理得,得解得或,当时,的面积,当时,的面积.【点睛】本题考查正余弦定理理解三角形,涉及三角形的面积公式和分类讨论思想,属于中档题19A=2321【解析】运用矩阵定义列

16、出方程组求解矩阵A【详解】由特征值、特征向量定义可知,A1=11,即abcd1-1=-11-1,得a-b=-1,c-d=1.同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩阵A=2321【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单20 (1)证明见解析;(2)60.【解析】试题分析:(1)连结PD,由题意可得,则AB平面PDE,;(2)法一:结合几何关系做出二面角的平面角,计算可得其正切值为,故二面角的大小为;法二:以D为原点建立空间直角坐标系,计算可得平面PBE的法向量平面PAB的法向量为据此计算可得二面角的

17、大小为.试题解析:(1)连结PD,PA=PB,PDAB,BCAB,DEAB又,AB平面PDE,PE平面PDE,ABPE(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC则DEPD,又EDAB,PD平面AB=D,DE平面PAB,过D做DF垂直PB与F,连接EF,则EFPB,DFE为所求二面角的平面角,则:DE=,DF=,则,故二面角的大小为法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC如图,以D为原点建立空间直角坐标系,B(1,0,0),P(0,0,),E(0,0),=(1,0,),=(0,)设平面PBE的法向量,令,得DE平

18、面PAB,平面PAB的法向量为设二面角的大小为,由图知,所以即二面角的大小为.21(1)在为增函数;证明见解析(2)【解析】(1)令,求出,可推得,故在为增函数;(2)令,则,由此利用分类讨论思想和导数性质求出实数的取值范围.【详解】(1)当时,.记,则,当时,.所以,所以在单调递增,所以.因为,所以,所以在为增函数.(2)由题意,得,记,则,令,则,当时,所以,所以在为增函数,即在单调递增,所以.当,恒成立,所以为增函数,即在单调递增,又,所以,所以在为增函数,所以所以满足题意.当,令,因为,所以,故在单调递增,故,即.故,又在单调递增,由零点存在性定理知,存在唯一实数,当时,单调递减,即单调递减,所以,此时在为减函数,所以,不合题意,应舍去.综上所述,的取值范围是.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论