版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知双曲线的左焦点为,直线经过点且与双曲线的一条渐近线垂直,直线与双曲线的左支交于不同的两点,若,则该双曲线的离心率为( )ABCD2若函数在处取得极值2,则( )A-3B3C-2D23函数的单调递增区间是( )ABCD4下列函数中,既是偶函
2、数又在区间上单调递增的是( )ABCD5若复数(为虚数单位),则的共轭复数的模为( )AB4C2D6若复数在复平面内对应的点在第二象限,则实数的取值范围是( )ABCD7陀螺是中国民间较早的娱乐工具之一,但陀螺这个名词,直到明朝刘侗、于奕正合撰的帝京景物略一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )ABCD8一个频率分布表(样本容量为)不小心被损坏了一部分,只记得样本中数据在上的频率为,则估计样本在、内的数据个数共有( )ABCD9若集合M1,3,N1,3,5,则满足MXN的集合X的个数为()A1B2C3D410如图所
3、示点是抛物线的焦点,点、分别在抛物线及圆的实线部分上运动, 且总是平行于轴, 则的周长的取值范围是( )ABCD11阅读下面的程序框图,运行相应的程序,程序运行输出的结果是( )A11B1C29D2812已知等差数列的公差为,前项和为,为某三角形的三边长,且该三角形有一个内角为,若对任意的恒成立,则实数( ).A6B5C4D3二、填空题:本题共4小题,每小题5分,共20分。13锐角中,角,所对的边分别为,若,则的取值范围是_.14设向量,且,则_.15在四棱锥中,是边长为的正三角形,为矩形,.若四棱锥的顶点均在球的球面上,则球的表面积为_16已知 ,则_.三、解答题:共70分。解答应写出文字说
4、明、证明过程或演算步骤。17(12分)如图,在四棱锥中,底面,为的中点,是上的点.(1)若平面,证明:平面.(2)求二面角的余弦值.18(12分)如图,椭圆的长轴长为,点、为椭圆上的三个点,为椭圆的右端点,过中心,且,(1)求椭圆的标准方程;(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.19(12分)已知在中,内角所对的边分别为,若,且.(1)求的值;(2)求的面积.20(12分)设函数.(1)求的值;(2)若,求函数的单调递减区间.21(12分)已知为椭圆的左、右焦点,离心率为,点在椭圆上.(1)求椭圆的方程;(2)过的直
5、线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.22(10分)已知,函数,(是自然对数的底数).()讨论函数极值点的个数;()若,且命题“,”是假命题,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】直线的方程为,令和双曲线方程联立,再由得到两交点坐标纵坐标关系进行求解即可.【详解】由题意可知直线的方程为,不妨设.则,且将代入双曲线方程中,得到设则由,可得,故则,解得则所以双曲线离心率故选:A【点睛】此题考查双曲线和直线相交问题,联立直线和双曲线方程得到两交
6、点坐标关系和已知条件即可求解,属于一般性题目.2A【解析】对函数求导,可得,即可求出,进而可求出答案.【详解】因为,所以,则,解得,则.故选:A.【点睛】本题考查了函数的导数与极值,考查了学生的运算求解能力,属于基础题.3D【解析】利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.【详解】因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.故选D.【点睛】本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.4C【解析】结合基本初等函数的奇偶性及单调性,结合各选项进行判断即可
7、.【详解】A:为非奇非偶函数,不符合题意;B:在上不单调,不符合题意;C:为偶函数,且在上单调递增,符合题意;D:为非奇非偶函数,不符合题意.故选:C.【点睛】本小题主要考查函数的单调性和奇偶性,属于基础题.5D【解析】由复数的综合运算求出,再写出其共轭复数,然后由模的定义计算模【详解】,故选:D【点睛】本题考查复数的运算,考查共轭复数与模的定义,属于基础题6B【解析】复数,在复平面内对应的点在第二象限,可得关于a的不等式组,解得a的范围.【详解】,由其在复平面对应的点在第二象限,得,则.故选:B.【点睛】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题7
8、C【解析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.8B【解析】计算出样本在的数据个数,再减去样本在的数据个数即可得出结果.【详解】由题意可知,样本在的数据个数为,样本在的数据个数为,因此,样本在、内的数据个数为.故选:B.【点睛】本题考查利用频数分布表计算频数,要理解频数、样本容量与频率三者之间的关系,考查计
9、算能力,属于基础题.9D【解析】可以是共4个,选D.10B【解析】根据抛物线方程求得焦点坐标和准线方程,结合定义表示出;根据抛物线与圆的位置关系和特点,求得点横坐标的取值范围,即可由的周长求得其范围.【详解】抛物线,则焦点,准线方程为,根据抛物线定义可得,圆,圆心为,半径为,点、分别在抛物线及圆的实线部分上运动,解得交点横坐标为2.点、分别在两个曲线上,总是平行于轴,因而两点不能重合,不能在轴上,则由圆心和半径可知,则的周长为,所以,故选:B.【点睛】本题考查了抛物线定义、方程及几何性质的简单应用,圆的几何性质应用,属于中档题.11C【解析】根据程序框图的模拟过程,写出每执行一次的运行结果,属
10、于基础题.【详解】初始值, 第一次循环:,;第二次循环:,;第三次循环:,;第四次循环:,;第五次循环:,;第六次循环:,;第七次循环:,;第九次循环:,;第十次循环:,;所以输出.故选:C【点睛】本题考查了循环结构的程序框图的读取以及运行结果,属于基础题.12C【解析】若对任意的恒成立,则为的最大值,所以由已知,只需求出取得最大值时的n即可.【详解】由已知,又三角形有一个内角为,所以,解得或(舍),故,当时,取得最大值,所以.故选:C.【点睛】本题考查等差数列前n项和的最值问题,考查学生的计算能力,是一道基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由余弦定理,正弦定理
11、得出,从而得出,推出的范围,由余弦函数的性质得出的范围,再利用二倍角公式化简,即可得出答案.【详解】由题意得由正弦定理得化简得又为锐角三角形,则,.故答案为【点睛】本题主要考查了正弦定理和余弦定理的应用,属于中档题.14【解析】根据向量的数量积的计算,以及向量的平方,简单计算,可得结果.【详解】由题可知:且由所以故答案为:【点睛】本题考查向量的坐标计算,主要考查计算,属基础题.15【解析】做 中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,即可求出的坐标,从而可求球的半径,进而能求
12、出球的表面积.【详解】解:如图做 中点,的中点,连接 ,由题意知,则 设的外接圆圆心为,则在直线上且 设长方形的外接圆圆心为,则在上且.设外接球的球心为 在 中,由余弦定理可知,.在平面中,以 为坐标原点,以 所在直线为 轴,以过点垂直于 轴的直线为 轴,如图建立坐标系,由题意知,在平面中且 设 ,则,因为,所以 解得.则 所以球的表面积为.故答案为: .【点睛】本题考查了几何体外接球的问题,考查了球的表面积.关于几何体的外接球的做题思路有:一是通过将几何体补充到长方体中,将几何体的外接球等同于长方体的外接球,求出体对角线即为直径,但这种方法适用性较差;二是通过球的球心与各面外接圆圆心的连线与
13、该平面垂直,设半径列方程求解;三是通过空间、平面坐标系进行求解.16【解析】对原方程两边求导,然后令求得表达式的值.【详解】对等式两边求导,得,令,则.【点睛】本小题主要考查二项式展开式,考查利用导数转化已知条件,考查赋值法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析(2)【解析】(1)因为,利用线面平行的判定定理可证出平面,利用点线面的位置关系,得出和,由于底面,利用线面垂直的性质,得出,且,最后结合线面垂直的判定定理得出平面,即可证出平面.(2)由(1)可知,两两垂直,建立空间直角坐标系,标出点坐标,运用空间向量坐标运算求出所需向量,分别
14、求出平面和平面的法向量,最后利用空间二面角公式,即可求出的余弦值.【详解】(1)证明:因为,平面,平面,所以平面,因为平面,平面,所以可设平面平面,又因为平面,所以.因为平面,平面,所以,从而得.因为底面,所以.因为,所以.因为,所以平面.综上,平面.(2)解:由(1)可得,两两垂直,以为原点,所在直线分别为,轴,建立如图所示的空间直角坐标系.因为,所以,则,所以,.设是平面的法向量,由取取,得.设是平面的法向量,由得取,得,所以,即的余弦值为.【点睛】本题考查线面垂直的判定和空间二面角的计算,还运用线面平行的性质、线面垂直的判定定理、点线面的位置关系、空间向量的坐标运算等,同时考查学生的空间
15、想象能力和逻辑推理能力.18(1);(2)详见解析.【解析】试题分析:(1)利用题中条件先得出的值,然后利用条件,结合椭圆的对称性得到点的坐标,然后将点的坐标代入椭圆方程求出的值,从而确定椭圆的方程;(2)将条件得到直线与的斜率直线的关系(互为相反数),然后设直线的方程为,将此直线的方程与椭圆方程联立,求出点的坐标,注意到直线与的斜率之间的关系得到点的坐标,最后再用斜率公式证明直线的斜率为定值.(1),又是等腰三角形,所以,把点代入椭圆方程,求得,所以椭圆方程为;(2)由题易得直线、斜率均存在,又,所以,设直线代入椭圆方程,化简得,其一解为,另一解为,可求,用代入得,为定值.考点:1.椭圆的方
16、程;2.直线与椭圆的位置关系;3.两点间连线的斜率19(1);(2)【解析】(1)将代入等式,结合正弦定理将边化为角,再将及代入,即可求得的值;(2)根据(1)中的值可求得和,进而可得,由三角形面积公式即可求解.【详解】(1)由,得,由正弦定理将边化为角可得,化简可得,解得.(2)在中,.【点睛】本题考查了正弦定理在边角转化中的应用,正弦差角公式的应用,三角形面积公式求法,属于基础题.20(1)(2)的递减区间为和【解析】(1)化简函数,代入,计算即可;(2)先利用正弦函数的图象与性质求出函数的单调递减区间,再结合即可求出.【详解】(1),从而.(2)令.解得.即函数的所有减区间为,考虑到,取
17、,可得,故的递减区间为和.【点睛】本题主要考查了三角函数的恒等变形,正弦函数的图象与性质,属于中档题.21(1);(2)存在,.【解析】(1)由条件建立关于的方程组,可求得,得出椭圆的方程;(2)当直线的斜率不存在时,可求得,求得,当直线的斜率存在且不为0时,设 联立直线与椭圆的方程,求出线段,再由得出线段,根据等差中项可求得,得出结论.【详解】(1)由条件得,所以椭圆的方程为:;(2), 当直线的斜率不存在时,此时,当直线的斜率存在且不为0时,设,联立 消元得, 设,直线的斜率为,同理可得 ,所以,综合,存在常数,使得成等差数列.【点睛】本题考查利用椭圆的离心率求椭圆的标准方程,直线与椭圆的位置关系中的弦长公式的相关问题,当两直线的斜率具有关系时,可能通过斜率的代换得出另一条线段的弦长,属于中档题.22(1)当时,没有极值点,当时,有一个极小值点.(2)【解析】试题分析 :(1),分,讨论,当时,对,当时,解得,在上是减函数,在上是增函数。所以,当时,没有极值点,当时,有一个极小值点.(2)原命题为假命题,则逆否命题为真命题。即不等式在区间内有解。设 ,所以 ,设 ,则,且是增函数,所以 。所以分和k1讨论。试题解析:()因为,所以,当时,对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 延迟履行合同的违约责任(2025年度)3篇
- 二零二五年度金融风险管理咨询合同范本6篇
- 二零二五年度海洋科技园区场地租赁及海洋资源开发合同2篇
- 2025年度园林景观工程苗木采购与验收合同范本4篇
- 二零二五版包装印刷品出口合同大全3篇
- 二零二五年度跨境电商货物买卖与物流安装合同4篇
- 2025年度不动产交易居间服务合同纠纷起诉状4篇
- 2025年校车租赁与校园交通安全教育合同3篇
- 二零二五年度环保技术抵押担保合同范本3篇
- 2025年度铝材产品售后服务与维修合同范本4篇
- (正式版)QC∕T 1206.1-2024 电动汽车动力蓄电池热管理系统 第1部分:通 用要求
- 《煤矿地质工作细则》矿安﹝2024﹞192号
- 平面向量及其应用试题及答案
- 2024高考复习必背英语词汇3500单词
- 消防控制室值班服务人员培训方案
- 《贵州旅游介绍》课件2
- 2024年中职单招(护理)专业综合知识考试题库(含答案)
- 无人机应用平台实施方案
- 挪用公款还款协议书范本
- 事业单位工作人员年度考核登记表(医生个人总结)
- 盾构隧道施工数字化与智能化系统集成
评论
0/150
提交评论