版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且从中随机抽取参加此次考试的学
2、生500名,估计理科数学成绩不低于110分的学生人数约为( )A40B60C80D1002中国古代用算筹来进行记数,算筹的摆放形式有纵横两种形式(如图所示),表示一个多位数时,像阿拉伯记数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,其中个位、百位、方位用纵式表示,十位、千位、十万位用横式表示,则56846可用算筹表示为( )ABCD3已知为正项等比数列,是它的前项和,若,且与的等差中项为,则的值是( )A29B30C31D324数列an是等差数列,a11,公差d1,2,且a4+a10+a1615,则实数的最大值为()ABCD5已知集合Myy2x,x0,Nxylg(2xx2
3、),则MN为( )A(1,)B(1,2)C2,)D1,)6已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是( )ABCD7已知等差数列的公差不为零,且,构成新的等差数列,为的前项和,若存在使得,则( )A10B11C12D138已知,则( )ABCD9已知向量,(其中为实数),则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件10若sin(+32)=33,则cos2=( )A-12B-13C13D1211已知向量,且,则( )ABC1D212已知(),i为虚数单位,则( )AB3C1D5二、填空题:本题共4小题,每小题5分,共20分。13在等比数
4、列中,则_14已知是夹角为的两个单位向量,若,则与的夹角为_.15展开式中的系数的和大于8而小于32,则_16在的二项展开式中,所有项的系数的和为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:()试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;()从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的
5、人数为X,求的分布列和数学期望;()为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)18(12分)在中,角,的对边分别为, 且的面积为.(1)求;(2)求的周长 .19(12分)已知函数.(1)求不等式的解集;(2)若函数的最大值为,且,求的最小值.20(12分)已知函数(1)解不等式;(2)若函数存在零点,求的求值范围21(12分)如图,在四边形中,.(1)求的长;(2)若的面积为6,求的值.2
6、2(10分)已知.(1)当时,求不等式的解集;(2)若,证明:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.2B【解析】根据题意表示出各位上的数字所对应的算筹即可得答案【详解】解:根据题意可得,各个数码的
7、筹式需要纵横相间,个位,百位,万位用纵式表示;十位,千位,十万位用横式表示,用算筹表示应为:纵5横6纵8横4纵6,从题目中所给出的信息找出对应算筹表示为中的故选:【点睛】本题主要考查学生的合情推理与演绎推理,属于基础题3B【解析】设正项等比数列的公比为q,运用等比数列的通项公式和等差数列的性质,求出公比,再由等比数列的求和公式,计算即可得到所求【详解】设正项等比数列的公比为q,则a4=16q3,a7=16q6,a4与a7的等差中项为,即有a4+a7=,即16q3+16q6,=,解得q=(负值舍去),则有S5=1故选C【点睛】本题考查等比数列的通项和求和公式的运用,同时考查等差数列的性质,考查运
8、算能力,属于中档题4D【解析】利用等差数列通项公式推导出,由d1,2,能求出实数取最大值【详解】数列an是等差数列,a11,公差d1,2,且a4+a10+a1615,1+3d+(1+9d)+1+15d15,解得,d1,2,2是减函数,d1时,实数取最大值为故选D【点睛】本题考查实数值的最大值的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题5B【解析】M=y|y=2x,x0=y|y1,N=x|y=lg(2x-x2)=x|2x-x20=x|x2-2x0=x|0 x2,MN=(1,2)故选B6B【解析】求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围【详解
9、】,当时,单调递增,当时,单调递减,在上只有一个极大值也是最大值,显然时,时,因此要使函数有两个零点,则,故选:B【点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围7D【解析】利用等差数列的通项公式可得,再利用等差数列的前项和公式即可求解.【详解】由,构成等差数列可得即又解得:又所以时,.故选:D【点睛】本题考查了等差数列的通项公式、等差数列的前项和公式,需熟记公式,属于基础题.8D【解析】根据指数函数的单调性,即当底数大于1时单调递增,当底数大于零小于1时单调递减,对选项逐一验证即可得到正确答案.【详解】因为,所以,所以是减函数,又因为,所以,所以,所以A,B
10、两项均错;又,所以,所以C错;对于D,所以,故选D.【点睛】这个题目考查的是应用不等式的性质和指对函数的单调性比较大小,两个式子比较大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性质得到大小关系,有时可以代入一些特殊的数据得到具体值,进而得到大小关系.9A【解析】结合向量垂直的坐标表示,将两个条件相互推导,根据能否推导的情况判断出充分、必要条件.【详解】由,则,所以;而当,则,解得或.所以“”是“”的充分不必要条件.故选:A【点睛】本小题考查平面向量的运算,向量垂直,充要条件等基础知识;考查运算求解能力,推理论证能力,应用意识.10B【解析】由三角函数的诱导公式和倍角公式化简即
11、可.【详解】因为sin+32=33,由诱导公式得cos=-33,所以cos2=2cos2-1=-13 .故选B【点睛】本题考查了三角函数的诱导公式和倍角公式,灵活掌握公式是关键,属于基础题.11A【解析】根据向量垂直的坐标表示列方程,解方程求得的值.【详解】由于向量,且,所以解得.故选:A【点睛】本小题主要考查向量垂直的坐标表示,属于基础题.12C【解析】利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.二、填空题:本题共4小题,每小题5分,共20分。131【解析】设等比数列的公比为,再根据题意用基本量法求解公比,进而利用等
12、比数列项之间的关系得即可.【详解】设等比数列的公比为.由,得,解得.又由,得.则.故答案为:1【点睛】本题主要考查了等比数列基本量的求解方法,属于基础题.14【解析】依题意可得,再根据求模,求数量积,最后根据夹角公式计算可得;【详解】解:因为是夹角为的两个单位向量所以,又,所以,所以,因为所以;故答案为:【点睛】本题考查平面向量的数量积的运算律,以及夹角的计算,属于基础题.154【解析】由题意可得项的系数与二项式系数是相等的,利用题意,得出不等式组,求得结果.【详解】观察式子可知,故答案为:4.【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有展开式中项的系数和,属于基础题目.161【
13、解析】设,令,的值即为所有项的系数之和。【详解】设,令,所有项的系数的和为。【点睛】本题主要考查二项式展开式所有项的系数的和的求法赋值法。一般地,对于 ,展开式各项系数之和为,注意与“二项式系数之和”区分。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 ()万;()分布列见解析, ;()【解析】()根据比例关系直接计算得到答案.() 的可能取值为,计算概率得到分布列,再计算数学期望得到答案.() 英语测试成绩在70分以上的概率为 ,故,解得答案.【详解】()样本中女生英语成绩在分以上的有人,故人数为:万人.() 8名男生中,测试成绩在70分以上的有人,的可能取值为:.,.故
14、分布列为:.() 英语测试成绩在70分以上的概率为 ,故,故.故的最小值为.【点睛】本题考查了样本估计总体,分布列,数学期望,意在考查学生的计算能力和综合应用能力.18(1)(2)【解析】(1)利用正弦,余弦定理对式子化简求解即可;(2)利用余弦定理以及三角形的面积,求解三角形的周长即可【详解】(1),由正弦定理可得:,即:,由余弦定理得.(2),所以,又,且 ,的周长为【点睛】本题考查正弦定理以及余弦定理的应用,三角形的面积公式,也考查计算能力,属于基础题.19(1)(2)【解析】(1)化简得到,分类解不等式得到答案.(2)的最大值,利用均值不等式计算得到答案.【详解】(1)因为,故或或解得
15、或,故不等式的解集为.(2)画出函数图像,根据图像可知的最大值.因为,所以,当且仅当时,等号成立,故的最小值是3.【点睛】本题考查了解不等式,均值不等式求最值,意在考查学生的计算能力和转化能力.20(1)或 ;(2)【解析】(1)通过讨论的范围,将绝对值符号去掉,转化为求不等式组的解集,之后取并集,得到原不等式的解集;(2)将函数零点问题转化为曲线交点问题解决,数形结合得到结果.【详解】(1)有题不等式可化为,当时,原不等式可化为,解得;当时,原不等式可化为,解得,不满足,舍去;当时,原不等式可化为,解得,所以不等式的解集为(2)因为,所以若函数存在零点则可转化为函数与的图像存在交点,函数在上单调增,在上单调递减,且.数形结合可知【点睛】该题考查的是有关不等式的问题,涉及到的知识点有分类讨论求绝对值不等式的解集,将零点问题转化为曲线交点的问题来解决,数形结合思想的应用,属于简单题目.21 (1) (2) 【解析】(1)利用余弦定理可得的长;(2)利用面积得出,结合正弦定理可得.【详解】解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大数据时代的行业现状与创新考核试卷
- 玉石的形成与演化过程考核试卷
- 公共设施管理的变革与创新考核试卷
- 山东省泰安市肥城市2024-2025学年三年级上学期期中英语试卷
- 生物科技在食品安全的应用考核试卷
- 盐海淡水资源的开发与利用策略考核试卷
- 制定目标与实现计划培训考核试卷
- 防震防火课件教学课件
- DB11T 714.1-2010 电子政务运维服务支撑系统规范 第1部分:基本要求
- 地理课件模板教学课件
- 2023年中国铁塔招聘笔试真题
- 常规弱电系统施工单价表纯劳务
- 中小学学校人防、物防、技防落实方案
- 2023湖南文艺出版社五年级音乐下册全册教案
- 2024-2025学年苏教版小学四年级上学期期中英语试题及解答参考
- 国开2024秋《形势与政策》专题测验1-5参考答案
- DLT 5707-2014 电力工程电缆防火封堵施工工艺导则
- 广东省佛山市南海区2024年七年级上学期期中数学试题【附参考答案】
- 小红书2024年家装行业月报(9月)
- 【PPP项目风险评估与控制探究的国内外文献综述3900字】
- 安徽省芜湖市2024年部编版初中九年级期中考试语文试卷
评论
0/150
提交评论