




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一讲集合与简易逻辑解 (AB)C= ,AC= 且BC= k2x2+(2bk1)x+b21=0AC=1=(2bk1)24k2(b21)04k24bk+10, 即 b214x2+(22k)x+(5+2b)=0BC= ,2=(1k)24(52b)0k22k+8b190从而8b20,即 b2.5 由及bN,得b=2代入由10和20知,方程只有负根,不符合要求; 当m1时,由x1+x2=(m1)0及x1x2=10知,方程只有正根,且必有一根在区间(0,1内,从而方程至少有一个根在区间0,2内 故所求m的取值范围是m1 例4设AXX=a2+b2,a、bZ,X1,X2A,求证:X1X2A。 证明:设X1a
2、2+b2,X2=c2+d2,a、b、c、dZ,则X1X2(a2+b2)(c2+d2)a2c2+b2d2+b2c2+a2d2a2c2+2acbd+b2d2+b2c2-2bcad+a2d2(ac+bd)2+(bc-ad)2又a、b、c、dZ,故ac+bd、bc-adZ,从而X1X2A例5已知集合MX,XY,lg(xy),S0,X,Y,且MS,则(X )(X2 )(X2002 )的值等于 _.解:由MS知,两集合元素完全相同。这样,M中必有一个元素为0,又由对数的性质知,0和负数没有对数,所以XY0,故X,Y均不为零,所以只能有lg(XY)0,从而XY1.MX,1,0,S0,X, .再由两集合相等知
3、当X1时,M1,1,0,S0,1,1,这与同一个集合中元素的互异性矛盾,故X1不满足题目要求;当X1时,M1,1,0,S0,1,1,MS,从而X1满足题目要求,此时Y1,于是X2K1 2 (K0,1,2,),X2K 2 (K1,2,),故所求代数式的值为0. 例6一个集合含有10个互不相同的两位数。试证,这个集合必有2个无公共元素的子集合,此两子集的各数之和相等。 解:已知集合含有10个不同的两位数,因它含有10个元素,故必有2101024个子集,其中非空子集有1023个,每一个子集内各数之和都不超过909198999451023,根据抽屉原理,一定存在2个不同的子集,其元素之和相等。如此2个子集无公共元素,即交集为空集,则已符合题目要求;如果这2个子集
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 同济大学项目管理案例大全共11个大型项目案例274
- 2025年汽车冷却风扇项目合作计划书
- 2025年芝士片项目发展计划
- 电子废物回收处理合作协议
- 高端体育场馆配套设施租赁及赛事运营管理协议
- 离婚协议管辖法院约定与婚后财产分割、子女抚养及赡养费支付及共同债务处理合同
- 快递末端网点承包经营及冷链物流合作协议
- 零售企业智能供应链金融风险控制合同
- 摄影器材销售与摄影技术培训及服务合同
- 商标使用权租赁及合规性监管合同
- 体检中心医护培训课件
- 2024年中国人保财险全系统陕西分公司招聘笔试参考题库含答案解析
- 多源异构数据融合关键技术研究
- 护患沟通与护患纠纷防范课件
- 医院培训课件:《护患沟通技巧》
- 食品安全监督抽查与抽检培训
- 脐带脱垂护理病例讨论
- 空调风道改造技术方案
- 前悬挂整秆式甘蔗收割机双刀盘切割与喂入装置设计与试验的中期报告
- 《不朽的贝尼尼雕塑》课件
- 《如何阅读文献》课件
评论
0/150
提交评论