2022届安徽省六安河西校区高考仿真卷数学试题含解析_第1页
2022届安徽省六安河西校区高考仿真卷数学试题含解析_第2页
2022届安徽省六安河西校区高考仿真卷数学试题含解析_第3页
2022届安徽省六安河西校区高考仿真卷数学试题含解析_第4页
2022届安徽省六安河西校区高考仿真卷数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若复数(为虚数单位)的实部与虚部相等,则的值为( )ABCD2圆柱被一平面截去一部分所得几何体的三视图如图所示,则该几何体的体积为( ) ABCD3设为坐标原点,是以为焦点的抛物线上

2、任意一点,是线段上的点,且,则直线的斜率的最大值为( )A1BCD4把函数的图象向右平移个单位,得到函数的图象给出下列四个命题的值域为的一个对称轴是的一个对称中心是存在两条互相垂直的切线其中正确的命题个数是( )A1B2C3D45设双曲线(a0,b0)的一个焦点为F(c,0)(c0),且离心率等于,若该双曲线的一条渐近线被圆x2+y22cx0截得的弦长为2,则该双曲线的标准方程为( )ABCD6高三珠海一模中,经抽样分析,全市理科数学成绩X近似服从正态分布,且从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( )A40B60C80D1007若集合,则=( )

3、ABCD8已知非零向量满足,若夹角的余弦值为,且,则实数的值为( )ABC或D9在中,分别为所对的边,若函数有极值点,则的范围是( )ABCD10如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积是( )ABCD811已知双曲线的一条渐近线倾斜角为,则( )A3BCD12如图,棱长为的正方体中,为线段的中点,分别为线段和 棱 上任意一点,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知正实数满足,则的最小值为 14已知直线被圆截得的弦长为2,则的值为_15已知双曲线的一条渐近线为,且经过抛物线的焦点,则双曲线的标准方程为_.1

4、6已知函数是定义在上的奇函数,且周期为,当时,则的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替)(2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定

5、该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率)每颗芯片置于一个工程手机中的测试费用均为300元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由18(12分)已知函数是自然

6、对数的底数.(1)若,讨论的单调性;(2)若有两个极值点,求的取值范围,并证明:.19(12分)已知函数f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)对任意,都有恒成立,求实数a的取值范围;(3)证明:对一切,都有成立20(12分)在直角坐标系xOy中,直线的参数方程为(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为.(1)写出圆C的直角坐标方程;(2)设直线l与圆C交于A,B两点,求的值.21(12分)已知数列中,前项和为,若对任意的,均有(是常数,且)成立,则称数列为“数列”.(1)若数列为“数列”,求数列的前项和;(2)若数列为“数列”,且

7、为整数,试问:是否存在数列,使得对任意,成立?如果存在,求出这样数列的的所有可能值,如果不存在,请说明理由.22(10分)已知函数(mR)的导函数为(1)若函数存在极值,求m的取值范围;(2)设函数(其中e为自然对数的底数),对任意mR,若关于x的不等式在(0,)上恒成立,求正整数k的取值集合参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.2B【解析】三视图对应的几何体为如图所示的几

8、何体,利用割补法可求其体积.【详解】根据三视图可得原几何体如图所示,它是一个圆柱截去上面一块几何体,把该几何体补成如下图所示的圆柱,其体积为,故原几何体的体积为. 故选:B.【点睛】本题考查三视图以及不规则几何体的体积,复原几何体时注意三视图中的点线关系与几何体中的点、线、面的对应关系,另外,不规则几何体的体积可用割补法来求其体积,本题属于基础题.3A【解析】设,因为,得到,利用直线的斜率公式,得到,结合基本不等式,即可求解.【详解】由题意,抛物线的焦点坐标为,设,因为,即线段的中点,所以,所以直线的斜率,当且仅当,即时等号成立,所以直线的斜率的最大值为1.故选:A.【点睛】本题主要考查了抛物

9、线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.4C【解析】由图象变换的原则可得,由可求得值域;利用代入检验法判断;对求导,并得到导函数的值域,即可判断.【详解】由题,则向右平移个单位可得, ,的值域为,错误;当时,所以是函数的一条对称轴,正确;当时,所以的一个对称中心是,正确;,则,使得,则在和处的切线互相垂直,正确.即正确,共3个.故选:C【点睛】本题考查三角函数的图像变换,考查代入检验法判断余弦型函数的对称轴和对称中心,考查导函数的几何意义的应用.5C【解析】由题得,又,联立解方程组即可得,进而得出双曲线方程.【详解】由题得 又该

10、双曲线的一条渐近线方程为,且被圆x2+y22cx0截得的弦长为2,所以 又 由可得:,所以双曲线的标准方程为.故选:C【点睛】本题主要考查了双曲线的简单几何性质,圆的方程的有关计算,考查了学生的计算能力.6D【解析】由正态分布的性质,根据题意,得到,求出概率,再由题中数据,即可求出结果.【详解】由题意,成绩X近似服从正态分布,则正态分布曲线的对称轴为,根据正态分布曲线的对称性,求得,所以该市某校有500人中,估计该校数学成绩不低于110分的人数为人,故选:.【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.7C【解析】求出集合,然后与集合取交集即可【详解】由题意,则,故答

11、案为C.【点睛】本题考查了分式不等式的解法,考查了集合的交集,考查了计算能力,属于基础题8D【解析】根据向量垂直则数量积为零,结合以及夹角的余弦值,即可求得参数值.【详解】依题意,得,即.将代入可得,解得(舍去).故选:D.【点睛】本题考查向量数量积的应用,涉及由向量垂直求参数值,属基础题.9D【解析】试题分析:由已知可得有两个不等实根.考点:1、余弦定理;2、函数的极值.【方法点晴】本题考查余弦定理,函数的极值,涉及函数与方程思想思想、数形结合思想和转化化归思想,考查逻辑思维能力、等价转化能力、运算求解能力,综合性较强,属于较难题型. 首先利用转化化归思想将原命题转化为有两个不等实根,从而可

12、得.10A【解析】由三视图还原出原几何体,得出几何体的结构特征,然后计算体积【详解】由三视图知原几何体是一个四棱锥,四棱锥底面是边长为2的正方形,高为2,直观图如图所示,故选:A【点睛】本题考查三视图,考查棱锥的体积公式,掌握基本几何体的三视图是解题关键11D【解析】由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,解得:.故选:.【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.12D【解析】取中点,过作面,可得为等腰

13、直角三角形,由,可得,当时, 最小,由 ,故,即可求解.【详解】取中点,过作面,如图:则,故,而对固定的点,当时, 最小此时由面,可知为等腰直角三角形,故.故选:D【点睛】本题考查了空间几何体中的线面垂直、考查了学生的空间想象能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。134【解析】由题意结合代数式的特点和均值不等式的结论整理计算即可求得最终结果.【详解】.当且仅当时等号成立.据此可知:的最小值为4.【点睛】条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数代换的方法构造和或积为常

14、数的式子,然后利用基本不等式求解最值141【解析】根据弦长为半径的两倍,得直线经过圆心,将圆心坐标代入直线方程可解得【详解】解:圆的圆心为(1,1),半径,因为直线被圆截得的弦长为2,所以直线经过圆心(1,1),解得故答案为:1【点睛】本题考查了直线与圆相交的性质,属基础题15【解析】设以直线为渐近线的双曲线的方程为,再由双曲线经过抛物线焦点,能求出双曲线方程【详解】解:设以直线为渐近线的双曲线的方程为,双曲线经过抛物线焦点,双曲线方程为,故答案为:【点睛】本题主要考查双曲线方程的求法,考查抛物线、双曲线简单性质的合理运用,属于中档题16【解析】由题意可得:,周期为,可得,可求出,最后再求的值

15、即可.【详解】解:函数是定义在上的奇函数,.由周期为,可知,.故答案为:.【点睛】本题主要考查函数的基本性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)预算经费不够测试完这100颗芯片,理由见解析【解析】(1)先求出,再利用频率分布直方图的平均数公式求这100颗芯片评测分数的平均数;(2)先求出每颗芯片的测试费用的数学期望,再比较得解.【详解】(1)依题意,故又因为所以,所求平均数为(万分)(2)由题意可知,手机公司抽取一颗芯片置于一个工程机中进行检测评分达到11万分的概率设每颗芯片的测试费用为X元,则X的可能取值为600,900,1200,15

16、00,故每颗芯片的测试费用的数学期望为(元),因为,所以显然预算经费不够测试完这100颗芯片【点睛】本题主要考查频率分布直方图的平均数的计算,考查离散型随机变量的数学期望的计算,意在考查学生对这些知识的理解掌握水平.18(1)减区间是,增区间是;(2),证明见解析.【解析】(1)当时,求得函数的导函数以及二阶导函数,由此求得的单调区间.(2)令求得,构造函数,利用导数求得的单调区间、极值和最值,结合有两个极值点,求得的取值范围.将代入列方程组,由证得.【详解】(1),又,所以在单增, 从而当时,递减,当时,递增.(2).令,令,则故在递增,在递减,所以.注意到当时,所以当时,有一个极值点,当时

17、,有两个极值点,当时,没有极值点,综上因为是的两个极值点,所以不妨设,得,因为在递减,且,所以又所以【点睛】本小题主要考查利用导数研究函数的单调区间,考查利用导数研究函数的极值点,考查利用导数证明不等式,考查化归与转化的数学思想方法,属于难题.19 (1) (2)( (3)见证明【解析】(1)先求函数导数,再求导函数零点,列表分析导函数符号变化规律确定函数单调性,最后根据函数单调性确定最小值取法;(2)先分离不等式,转化为对应函数最值问题,利用导数求对应函数最值即得结果;(3)构造两个函数,再利用两函数最值关系进行证明.【详解】(1)当时,单调递减,当时,单调递增,所以函数f(x)的最小值为f

18、()=;(2)因为所以问题等价于在上恒成立,记则,因为,令函数f(x)在(0,1)上单调递减;函数f(x)在(1,+)上单调递增;即,即实数a的取值范围为(.(3)问题等价于证明由(1)知道 ,令函数在(0,1)上单调递增;函数在(1,+)上单调递减;所以,因此,因为两个等号不能同时取得,所以即对一切,都有成立.【点睛】对于求不等式成立时的参数范围问题,在可能的情况下把参数分离出来,使不等式一端是含有参数的不等式,另一端是一个区间上具体的函数,这样就把问题转化为一端是函数,另一端是参数的不等式,便于问题的解决.但要注意分离参数法不是万能的,如果分离参数后,得出的函数解析式较为复杂,性质很难研究

19、,就不要使用分离参数法.20(1);(2)20【解析】(1)利用即可得到答案;(2)利用直线参数方程的几何意义,.【详解】解:(1)由,得圆C的直角坐标方程为,即.(2)将直线l的参数方程代入圆C的直角坐标方程,得,即,设两交点A,B所对应的参数分别为,从而,则.【点睛】本题考查了极坐标方程与普通方程的互化、直线参数方程的几何意义等知识,考查学生的计算能力,是一道容易题.21(1)(2)存在,【解析】由数列为“数列”可得,,两式相减得,又,利用等比数列通项公式即可求出,进而求出;由题意得,两式相减得,据此可得,当时,进而可得,即数列为常数列,进而可得,结合,得到关于的不等式,再由时,且为整数即可求出符合题意的的所有值.【详解】因为数列为“数列”,所以,故,两式相减得, 在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论