




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知为等腰直角三角形,为所在平面内一点,且,则( )ABCD2若x(0,1),alnx,b,celnx,则a,b,
2、c的大小关系为()AbcaBcbaCabcDbac3复数(为虚数单位),则的共轭复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限4若复数(是虚数单位),则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限5某三棱锥的三视图如图所示,网格纸上小正方形的边长为,则该三棱锥外接球的表面积为( )ABCD6已知正方体的棱长为2,点为棱的中点,则平面截该正方体的内切球所得截面面积为( )ABCD7已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,且,则该双曲线的渐近线方程为( )ABCD8展开项中的常数项为A1B11C-19D519已知集合(),若集
3、合,且对任意的,存在使得,其中,则称集合A为集合M的基底.下列集合中能作为集合的基底的是( )ABCD10已知数列 是公比为 的等比数列,且 , , 成等差数列,则公比 的值为( )ABC 或 D 或 11下列图形中,不是三棱柱展开图的是( )ABCD12已知双曲线的焦距为,若的渐近线上存在点,使得经过点所作的圆的两条切线互相垂直,则双曲线的离心率的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13九章算术是中国古代的数学名著,其中方田一章给出了弧田面积的计算公式如图所示,弧田是由圆弧AB和其所对弦AB围成的图形,若弧田的弧AB长为4,弧所在的圆的半径为6,则弧田的弦
4、AB长是_,弧田的面积是_14如图,在梯形中,分别是的中点,若,则的值为_.15已知,则_,_.16已知数列的前项和为,则满足的正整数的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,已知抛物线C:()的焦点F在直线上,平行于x轴的两条直线,分别交抛物线C于A,B两点,交该抛物线的准线于D,E两点.(1)求抛物线C的方程;(2)若F在线段上,P是的中点,证明:.18(12分)已知函数().(1)讨论的单调性;(2)若对,恒成立,求的取值范围.19(12分)设函数.(1)当时,求不等式的解集;(2)若不等式恒成立,求实数a的取值范围.20(
5、12分)已知均为正实数,函数的最小值为.证明:(1);(2).21(12分)已知椭圆过点,设椭圆的上顶点为,右顶点和右焦点分别为,且(1)求椭圆的标准方程;(2)设直线交椭圆于,两点,设直线与直线的斜率分别为,若,试判断直线是否过定点?若过定点,求出该定点的坐标;若不过定点,请说明理由22(10分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】以AB,AC分别为x轴和y轴建立坐标系,结
6、合向量的坐标运算,可求得点的坐标,进而求得,由平面向量的数量积可得答案.【详解】如图建系,则,由,易得,则.故选:D【点睛】本题考查平面向量基本定理的运用、数量积的运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.2A【解析】利用指数函数、对数函数的单调性直接求解【详解】x(0,1),alnx0,b()lnx()01,0celnxe01,a,b,c的大小关系为bca故选:A【点睛】本题考查三个数的大小的判断,考查指数函数、对数函数的单调性等基础知识,考查运算求解能力,是基础题3C【解析】由复数除法求出,写出共轭复数,写出共轭复数对应点坐标即得【详解】解析:,对应点为,在
7、第三象限故选:C【点睛】本题考查复数的除法运算,共轭复数的概念,复数的几何意义掌握复数除法法则是解题关键4A【解析】将 整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把 当成进行计算.5C【解析】作出三棱锥的实物图,然后补成直四棱锥,且底面为矩形,可得知三棱锥的外接球和直四棱锥的外接球为同一个球,然后计算出矩形的外接圆直径,利用公式可计算出外接球的直径,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【详解】三棱锥的实物图如下图所示:将其补成直四棱锥,底面,可
8、知四边形为矩形,且,.矩形的外接圆直径,且.所以,三棱锥外接球的直径为,因此,该三棱锥的外接球的表面积为.故选:C.【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.6A【解析】根据球的特点可知截面是一个圆,根据等体积法计算出球心到平面的距离,由此求解出截面圆的半径,从而截面面积可求.【详解】如图所示:设内切球球心为,到平面的距离为,截面圆的半径为,因为内切球的半径等于正方体棱长的一半,所以球的半径为,又因为,所以,又因为,所以,所以,所以截面圆的半径,所以截面圆的面积为.故选:A.【点睛
9、】本题考查正方体的内切球的特点以及球的截面面积的计算,难度一般.任何一个平面去截球,得到的截面一定是圆面,截面圆的半径可通过球的半径以及球心到截面的距离去计算.7D【解析】根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.8B【解析】展开式中的每一项是由每个括号中各出一项组成的,所以可分成三种情况.【详解】展开式中的项为常数项,有3种情况
10、:(1)5个括号都出1,即;(2)两个括号出,两个括号出,一个括号出1,即;(3)一个括号出,一个括号出,三个括号出1,即;所以展开项中的常数项为,故选B.【点睛】本题考查二项式定理知识的生成过程,考查定理的本质,即展开式中每一项是由每个括号各出一项相乘组合而成的.9C【解析】根据题目中的基底定义求解.【详解】因为,所以能作为集合的基底,故选:C【点睛】本题主要考查集合的新定义,还考查了理解辨析的能力,属于基础题.10D【解析】由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,2aq2=aq+a,2q2=q+1,q=1或q= 故选:D【点睛】本题考查等差等比数列的
11、综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练11C【解析】根据三棱柱的展开图的可能情况选出选项.【详解】由图可知,ABD选项可以围成三棱柱,C选项不是三棱柱展开图.故选:C【点睛】本小题主要考查三棱柱展开图的判断,属于基础题.12B【解析】由可得;由过点所作的圆的两条切线互相垂直可得,又焦点到双曲线渐近线的距离为,则,进而求解.【详解】,所以离心率,又圆是以为圆心,半径的圆,要使得经过点所作的圆的两条切线互相垂直,必有,而焦点到双曲线渐近线的距离为,所以,即,所以,所以双曲线的离心率的取值范围是.故选:B【点睛】本题考查双曲线的离心率的范围,考查双曲线的性质
12、的应用.二、填空题:本题共4小题,每小题5分,共20分。136 129 【解析】过作,交于,先求得圆心角的弧度数,然后解解三角形求得的长.利用扇形面积减去三角形的面积,求得弧田的面积.【详解】如图,弧田的弧AB长为4,弧所在的圆的半径为6,过作,交于,根据圆的几何性质可知,垂直平分.AOB,可得AOD,OA6,AB2AD2OAsin26,弧田的面积SS扇形OABSOAB46129故答案为:6,129【点睛】本小题主要考查弓形弦长和弓形面积的计算,考查中国古代数学文化,属于中档题.14【解析】建系,设设,由可得,进一步得到的坐标,再利用数量积的坐标运算即可得到答案.【详解】以A为坐标原点,AD为
13、x轴建立如图所示的直角坐标系,设,则,所以,由,得,即,又,所以,故,所以.故答案为:2【点睛】本题考查利用坐标法求向量的数量积,考查学生的运算求解能力,是一道中档题.15 【解析】利用两角和的正切公式结合可得出的方程,即可求出的值,然后利用二倍角的正、余弦公式结合弦化切思想求出和的值,进而利用两角差的余弦公式求出的值.【详解】,.故答案为:;.【点睛】本题主要考查三角函数值的计算,考查两角和的正切公式、两角差的余弦公式、二倍角的正弦公式、余弦公式以及弦化切思想的应用,难度不大166【解析】已知,利用,求出通项,然后即可求解【详解】,当时,;当时,故数列是首项为-2,公比为2的等比数列,.又,
14、.【点睛】本题考查通项求解问题,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)见解析【解析】(1)根据抛物线的焦点在直线上,可求得的值,从而求得抛物线的方程;(2)法一:设直线,的方程分别为和且,可得,的坐标,进而可得直线的方程,根据在直线上,可得,再分别求得,即可得证;法二:设,则,根据直线的斜率不为0,设出直线的方程为,联立直线和抛物线的方程,结合韦达定理,分别求出,化简,即可得证.【详解】(1)抛物线C的焦点坐标为,且该点在直线上,所以,解得,故所求抛物线C的方程为(2)法一:由点F在线段上,可设直线,的方程分别为和且,则,.直线的方程为,即.
15、又点在线段上,.P是的中点,.由于,不重合,所以法二:设,则当直线的斜率为0时,不符合题意,故可设直线的方程为联立直线和抛物线的方程,得又,为该方程两根,所以,.,由于,不重合,所以【点睛】本题考查抛物线的标准方程,考查抛物线的定义,考查直线与抛物线的位置关系,属于中档题18(1)当时,在上单调递减,在上单调递增;当时, 在上单调递增;(2).【解析】(1)求出函数的定义域和导函数, ,对讨论,得导函数的正负,得原函数的单调性;(2)法一: 由得,分别运用导函数得出函数(),的单调性,和其函数的最值,可得 ,可得的范围;法二:由得,化为令(),研究函数的单调性,可得的取值范围.【详解】(1)的
16、定义域为,当时,由得,得, 在上单调递减,在上单调递增;当时,恒成立,在上单调递增;(2)法一: 由得,令(),则,在上单调递减,即,令,则,在上单调递增,在上单调递减,所以,即, (*)当时,(*)式恒成立,即恒成立,满足题意法二:由得,令(),则,在上单调递减,即,当时,由()知在上单调递增,恒成立,满足题意当时,令,则,所以在上单调递减,又,当时,使得,当时,即,又,不满足题意,综上所述,的取值范围是【点睛】本题考查对于含参数的函数的单调性的讨论,不等式恒成立时,求解参数的范围,属于难度题.19(1)(2)【解析】(1) 利用分段讨论法去掉绝对值,结合图象,从而求得不等式的解集;(2)
17、求出函数的最小值,把问题化为,从而求得的取值范围.【详解】(1)当时,则所以不等式的解集为.(2)等价于,而,故等价于,所以或,即或,所以实数a的取值范围为.【点睛】本题考查含有绝对值的不等式解法、不等式恒成立问题,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力,难度一般.20(1)证明见解析(2)证明见解析【解析】(1)运用绝对值不等式的性质,注意等号成立的条件,即可求得最小值,再运用柯西不等式,即可得到最小值.(2)利用基本不等式即可得到结论,注意等号成立的条件.【详解】(1)由题意,则函数,又函数的最小值为,即,由柯西不等式得,当且仅当时取“=”.故.(
18、2)由题意,利用基本不等式可得,(以上三式当且仅当时同时取“=”)由(1)知,所以,将以上三式相加得即.【点睛】本题主要考查绝对值不等式、柯西不等式等基础知识,考查运算能力,属于中档题.21(1) (2)直线过定点,该定点的坐标为【解析】(1)因为椭圆过点,所以 ,设为坐标原点,因为,所以,又,所以 ,将联立解得(负值舍去),所以椭圆的标准方程为 (2)由(1)可知,设,将代入,消去可得, 则, 所以, 所以,此时,所以,此时直线的方程为,即, 令,可得,所以直线过定点,该定点的坐标为22(1)证明见解析;(2)见解析;(3)存在,1.【解析】(1),求出单调区间,进而求出,即可证明结论;(2)对(或)是否恒成立分类讨论,若恒成立,没有极值点,若不恒成立,求出的解,即可求出结论;(3)令,可证恒成立,而,由(2)得,在为减函数,在上单调递减,在都存在,不满足,当时,设,且,只需求出在单调递增时的取值范围即可.【详解】(1),当时,当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级语文新人教版知识点总结
- 一年级【部编语文】一年级下册总复习∶阅读理解(提高)知识讲解及答案
- 带娃背诗有“套路”
- 2025-2030年中国RCA测试纸行业深度研究分析报告
- 生铁炼制项目可行性研究报告(技术工艺+设备选型+财务方案+厂区规划)方案
- 国道绍兴东湖至蒿坝段改建工程环境影响评价报告书
- 中国滑雪鞋未来趋势预测分析及投资规划研究建议报告
- 化妆学徒合同范本
- 2025年新型热塑弹性体防水卷材成型设备项目发展计划
- 贷款服务合同范本模板
- 2025《医药企业防范商业贿赂风险合规指引》解读课件
- 2025年湖南工业职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2025年丹参原药材项目可行性研究报告
- 物理(A版)-安徽省合肥一中(省十联考)2024-2025学年度高二年级上学期期末测试试题和答案
- 人教版初中历史与社会七年级下册 6.3.3向西开放的重要门户-乌鲁木齐 说课稿
- 综合材料绘画课程设计
- 数学史简介课件
- 八年级 下册《黄河两岸的歌(1)》课件
- 春季安全教育培训课件
- T-CIAPS 0035-2024 储能电池液冷散热器
- 《ZN真空断路器》课件
评论
0/150
提交评论