2022届河北省邯郸市曲周县高考仿真卷数学试题含解析_第1页
2022届河北省邯郸市曲周县高考仿真卷数学试题含解析_第2页
2022届河北省邯郸市曲周县高考仿真卷数学试题含解析_第3页
2022届河北省邯郸市曲周县高考仿真卷数学试题含解析_第4页
2022届河北省邯郸市曲周县高考仿真卷数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为( )ABC8D62已知为实数集,则( )ABCD3已知函数(,),将函数的图

2、象向左平移个单位长度,得到函数的部分图象如图所示,则是的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4已知,分别为内角,的对边,的面积为,则( )AB4C5D5若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A函数在上单调递增B函数的周期是C函数的图象关于点对称D函数在上最大值是16设,则“ “是“”的( )A充分而不必要条件B必要而不充分条件C充要条件D既不充分也不必条件7棱长为2的正方体内有一个内切球,过正方体中两条异面直线,的中点作直线,则该直线被球面截在球内的线段的长为( )ABCD18在三棱锥中,P在底面ABC内的射

3、影D位于直线AC上,且,.设三棱锥的每个顶点都在球Q的球面上,则球Q的半径为( )ABCD9已知为抛物线的准线,抛物线上的点到的距离为,点的坐标为,则的最小值是( )AB4C2D102019年10月1日,为了庆祝中华人民共和国成立70周年,小明、小红、小金三人以国庆为主题各自独立完成一幅十字绣赠送给当地的村委会,这三幅十字绣分别命名为“鸿福齐天”、“国富民强”、“兴国之路”,为了弄清“国富民强”这一作品是谁制作的,村支书对三人进行了问话,得到回复如下:小明说:“鸿福齐天”是我制作的;小红说:“国富民强”不是小明制作的,就是我制作的;小金说:“兴国之路”不是我制作的,若三人的说法有且仅有一人是正

4、确的,则“鸿福齐天”的制作者是( )A小明B小红C小金D小金或小明11设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若,且,则点的轨迹方程是( )ABCD12下列函数中,图象关于轴对称的为( )AB,CD二、填空题:本题共4小题,每小题5分,共20分。13在中,内角的对边分别为,已知,则的面积为_14如图,在一个倒置的高为2的圆锥形容器中,装有深度为的水,再放入一个半径为1的不锈钢制的实心半球后,半球的大圆面、水面均与容器口相平,则的值为_.15设数列为等差数列,其前项和为,已知,若对任意都有成立,则的值为_16已知集合,若,且,则实数所有的可能取值构成的集合

5、是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在三棱柱中,四边形是菱形,点M、N分别是、的中点,且.(1)求证:平面平面;(2)求四棱锥的体积.18(12分)已知.(1)解关于x的不等式:;(2)若的最小值为M,且,求证:.19(12分)已知抛物线的焦点为,点,点为抛物线上的动点 (1)若的最小值为,求实数的值; (2)设线段的中点为,其中为坐标原点,若,求的面积20(12分)已知函数f(x)xlnx,g(x)x2ax.(1)求函数f(x)在区间t,t1(t0)上的最小值m(t);(2)令h(x)g(x)f(x),A(x1,h(x1),B(x2,h(x2)(

6、x1x2)是函数h(x)图像上任意两点,且满足1,求实数a的取值范围;(3)若x(0,1,使f(x)成立,求实数a的最大值21(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)已知点,直线与曲线交于、两点,求.22(10分)已知数列和满足,.()求与;()记数列的前项和为,且,若对,恒成立,求正整数的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】由椭圆的定义以及双曲线的定义、离心率公式化简,结合基本不等式即可求解.【详解】设椭圆的长半轴长为,双曲线的半实

7、轴长为,半焦距为,则,设由椭圆的定义以及双曲线的定义可得:,则 当且仅当时,取等号.故选:C【点睛】本题主要考查了椭圆的定义以及双曲线的定义、离心率公式,属于中等题.2C【解析】求出集合,由此能求出【详解】为实数集,或,故选:【点睛】本题考查交集、补集的求法,考查交集、补集的性质等基础知识,考查运算求解能力,是基础题3B【解析】先根据图象求出函数的解析式,再由平移知识得到的解析式,然后分别找出和的等价条件,即可根据充分条件,必要条件的定义求出.【详解】设,根据图象可知,再由, 取,.将函数的图象向右平移个单位长度,得到函数的图象,.,令,则,显然,是的必要不充分条件.故选:B【点睛】本题主要考

8、查利用图象求正(余)弦型函数的解析式,三角函数的图形变换, 二倍角公式的应用,充分条件,必要条件的定义的应用,意在考查学生的数学运算能力和逻辑推理能力,属于中档题.4D【解析】由正弦定理可知,从而可求出.通过可求出,结合余弦定理即可求出 的值.【详解】解:,即,即. ,则.,解得., 故选:D.【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角形的面积公式,考查同角三角函数的基本关系.本题的关键是通过正弦定理结合已知条件,得到角 的正弦值余弦值.5A【解析】根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可

9、知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【详解】将横坐标缩短到原来的得:当时,在上单调递增 在上单调递增,正确;的最小正周期为: 不是的周期,错误;当时,关于点对称,错误;当时, 此时没有最大值,错误.本题正确选项:【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.6B【解析】解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件

10、.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.7C【解析】连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OHMN,推导出OHRQ,且OHRQ,由此能求出该直线被球面截在球内的线段的长【详解】如图,MN为该直线被球面截在球内的线段连结并延长PO,交对棱C1D1于R,则R为对棱的中点,取MN的中点H,则OHMN,OHRQ,且OHRQ,MH,MN故选:C【点睛】本题主要考查该直线被球面截在球内的线段的长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题8A【解析】设的中点为O先求出外接圆的

11、半径,设,利用平面ABC,得 ,在 及中利用勾股定理构造方程求得球的半径即可【详解】设的中点为O,因为,所以外接圆的圆心M在BO上.设此圆的半径为r.因为,所以,解得.因为,所以.设,易知平面ABC,则.因为,所以,即,解得.所以球Q的半径.故选:A【点睛】本题考查球的组合体,考查空间想象能力,考查计算求解能力,是中档题9B【解析】设抛物线焦点为,由题意利用抛物线的定义可得,当共线时,取得最小值,由此求得答案.【详解】解:抛物线焦点,准线,过作交于点,连接由抛物线定义,当且仅当三点共线时,取“”号,的最小值为.故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形

12、结合的数学思想,属于中档题.10B【解析】将三个人制作的所有情况列举出来,再一一论证.【详解】依题意,三个人制作的所有情况如下所示:123456鸿福齐天小明小明小红小红小金小金国富民强小红小金小金小明小红小明兴国之路小金小红小明小金小明小红若小明的说法正确,则均不满足;若小红的说法正确,则4满足;若小金的说法正确,则3满足.故“鸿福齐天”的制作者是小红,故选:B.【点睛】本题考查推理与证明,还考查推理论证能力以及分类讨论思想,属于基础题.11A【解析】设坐标,根据向量坐标运算表示出,从而可利用表示出;由坐标运算表示出,代入整理可得所求的轨迹方程.【详解】设,其中, ,即 关于轴对称 故选:【点

13、睛】本题考查动点轨迹方程的求解,涉及到平面向量的坐标运算、数量积运算;关键是利用动点坐标表示出变量,根据平面向量数量积的坐标运算可整理得轨迹方程.12D【解析】图象关于轴对称的函数为偶函数,用偶函数的定义及性质对选项进行判断可解.【详解】图象关于轴对称的函数为偶函数;A中,故为奇函数;B中,的定义域为,不关于原点对称,故为非奇非偶函数;C中,由正弦函数性质可知,为奇函数;D中,且,故为偶函数.故选:D.【点睛】本题考查判断函数奇偶性. 判断函数奇偶性的两种方法:(1)定义法:对于函数的定义域内任意一个都有,则函数是奇函数;都有,则函数是偶函数 (2)图象法:函数是奇(偶)函数函数图象关于原点(

14、轴)对称二、填空题:本题共4小题,每小题5分,共20分。13【解析】由余弦定理先算出c,再利用面积公式计算即可.【详解】由余弦定理,得,即,解得,故的面积.故答案为:【点睛】本题考查利用余弦定理求解三角形的面积,考查学生的计算能力,是一道基础题.14【解析】由已知可得到圆锥的底面半径,再由圆锥的体积等于半球的体积与水的体积之和即可建立方程.【详解】设圆锥的底面半径为,体积为,半球的体积为,水(小圆锥)的体积为,如图则,所以,解得,所以,由,得,解得.故答案为:【点睛】本题考查圆锥的体积、球的体积的计算,考查学生空间想象能力与计算能力,是一道中档题.15【解析】由已知条件得出关于首项和公差的方程

15、组,解出这两个量,计算出,利用二次函数的基本性质求出的最大值及其对应的值,即可得解.【详解】设等差数列的公差为,由,解得,.所以,当时,取得最大值,对任意都有成立,则为数列的最大值,因此,.故答案为:.【点睛】本题考查等差数列前项和最值的计算,一般利用二次函数的基本性质求解,考查计算能力,属于中等题.16.【解析】化简集合,由,以及,即可求出结论.【详解】集合,若,则的可能取值为,0,2,3,又因为,所以实数所有的可能取值构成的集合是.故答案为:.【点睛】本题考查集合与元素的关系,理解题意是解题的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解

16、析;(2).【解析】(1)要证面面垂直需要先证明线面垂直,即证明出平面即可;(2)求出点A到平面的距离,然后根据棱锥的体积公式即可求出四棱锥的体积.【详解】(1)连接,由是平行四边形及N是的中点,得N也是的中点,因为点M是的中点,所以,因为,所以,又,所以平面,又平面,所以平面平面;(2)过A作交于点O,因为平面平面,平面平面,所以平面,由是菱形及,得为三角形,则,由平面,得,从而侧面为矩形,所以.【点睛】本题主要考查了面面垂直的证明,求四棱锥的体积,属于一般题.18(1);(2)证明见解析.【解析】(1)分类讨论求解绝对值不等式即可;(2)由(1)中所得函数,求得最小值,再利用均值不等式即可

17、证明.【详解】(1)当时,等价于,该不等式恒成立, 当时,等价于,该不等式解集为, 当时,等价于,解得, 综上,或,所以不等式的解集为. (2),易得的最小值为1,即因为,所以,所以, 当且仅当时等号成立.【点睛】本题考查利用分类讨论求解绝对值不等式,涉及利用均值不等式证明不等式,属综合中档题.19(1)的值为或.(2)【解析】(1)分类讨论,当时,线段与抛物线没有公共点,设点在抛物线准线上的射影为,当三点共线时,能取得最小值,利用抛物线的焦半径公式即可求解;当时,线段与抛物线有公共点,利用两点间的距离公式即可求解. (2)由题意可得轴且设,则,代入抛物线方程求出,再利用三角形的面积公式即可求

18、解.【详解】由题,若线段与抛物线没有公共点,即时,设点在抛物线准线上的射影为,则三点共线时,的最小值为,此时若线段与抛物线有公共点,即时,则三点共线时,的最小值为:,此时综上,实数的值为或.因为,所以轴且设,则,代入抛物线的方程解得于是,所以【点睛】本题考查了抛物线的焦半径公式、直线与抛物线的位置关系中的面积问题,属于中档题.20(1)m(t)(2)a22.(3)a22.【解析】(1)是研究在动区间上的最值问题,这类问题的研究方法就是通过讨论函数的极值点与所研究的区间的大小关系来进行求解(2)注意到函数h(x)的图像上任意不同两点A,B连线的斜率总大于1,等价于h(x1)h(x2)x1x2(x

19、1x2)恒成立,从而构造函数F(x)h(x)x在(0,)上单调递增,进而等价于F(x)0在(0,)上恒成立来加以研究(3)用处理恒成立问题来处理有解问题,先分离变量转化为求对应函数的最值,得到a,再利用导数求函数M(x)的最大值,这要用到二次求导,才可确定函数单调性,进而确定函数最值【详解】(1) f(x)1,x0,令f(x)0,则x1.当t1时,f(x)在t,t1上单调递增,f(x)的最小值为f(t)tlnt;当0t1时,f(x)在区间(t,1)上为减函数,在区间(1,t1)上为增函数,f(x)的最小值为f(1)1.综上,m(t)(2)h(x)x2(a1)xlnx,不妨取0 x1x2,则x1

20、x20,则由,可得h(x1)h(x2)x1x2,变形得h(x1)x1h(x2)x2恒成立令F(x)h(x)xx2(a2)xlnx,x0,则F(x)x2(a2)xlnx在(0,)上单调递增,故F(x)2x(a2)0在(0,)上恒成立,所以2xa2在(0,)上恒成立因为2x2,当且仅当x时取“”,所以a22.(3)因为f(x),所以a(x1)2x2xlnx.因为x(0,1,则x1(1,2,所以x(0,1,使得a成立令M(x),则M(x).令y2x23xlnx1,则由y0 可得x或x1(舍)当x时,y0,则函数y2x23xlnx1在上单调递减;当x时,y0,则函数y2x23xlnx1在上单调递增所以yln40,所以M(x)0在x(0,1时恒

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论