2022届甘肃省灵台高三压轴卷数学试卷含解析_第1页
2022届甘肃省灵台高三压轴卷数学试卷含解析_第2页
2022届甘肃省灵台高三压轴卷数学试卷含解析_第3页
2022届甘肃省灵台高三压轴卷数学试卷含解析_第4页
2022届甘肃省灵台高三压轴卷数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若,则( )ABCD2在四边形中,点在线段的延长线上,且,点在边所在直线上,则的最大值为( )ABCD3若满足,且目标函数的最大值为2,则的最小值为( )A8B4CD64如图所示的“数字塔”有以下规律:每一层最左与最右的数字均为2,除此之外每个数字均为其两肩的数字之积,则该“数字塔”前10层的所有数字之积最接近( )ABCD5已知全集U=x|x24,xZ,A=1,2,则CUA=( )A-1B-1,0C-2,-1,0D-2,-1,0,1,26我国古代数学著作九章算术有如下问题:“今有

3、蒲生一日,长三尺莞生一日,长一尺蒲生日自半,莞生日自倍.问几何日而长倍?”意思是:“今有蒲草第天长高尺,芜草第天长高尺以后,蒲草每天长高前一天的一半,芜草每天长高前一天的倍.问第几天莞草是蒲草的二倍?”你认为莞草是蒲草的二倍长所需要的天数是( )(结果采取“只入不舍”的原则取整数,相关数据:,)ABCD7己知函数若函数的图象上关于原点对称的点有2对,则实数的取值范围是( )ABCD8将函数图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移个单位长度,则所得函数图象的一个对称中心为( )ABCD9设等差数列的前n项和为,且,则( )A9B12CD10阅读如图所示的程序框图,运行相应的程

4、序,则输出的结果为( )AB6CD11记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为( )ABCD12函数的图象可能为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知全集,集合,则_.14若、满足约束条件,则的最小值为_.15已知函数是定义在上的奇函数,其图象关于直线对称,当时,(其中是自然对数的底数,若,则实数的值为_.16的展开式中,的系数为_(用数字作答).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,且PA=AD,E, F分别是棱AB,

5、 PC的中点.求证:(1) EF /平面PAD;(2)平面PCE平面PCD18(12分)已知在等比数列中,.(1)求数列的通项公式;(2)若,求数列前项的和.19(12分)某中学为研究学生的身体素质与体育锻炼时间的关系,对该校名高三学生平均每天体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)将学生日均体育锻炼时间在的学生评价为“锻炼达标”(1)请根据上述表格中的统计数据填写下面列联表:并通过计算判断,是否能在犯错误的概率不超过的前提下认为“锻炼达标”与性别有关?(2)在“锻炼达标”的学生中,按男女用分层抽样方法抽出人,进行体育锻炼体会交流(i)求这人中,男生、女生各有多少人?(ii

6、)从参加体会交流的人中,随机选出人发言,记这人中女生的人数为,求的分布列和数学期望参考公式:,其中临界值表:0.100.050.0250.01002.7063.8415.0246.63520(12分)底面为菱形的直四棱柱,被一平面截取后得到如图所示的几何体.若,.(1)求证:;(2)求二面角的正弦值.21(12分)已知满足 ,且,求的值及的面积.(从,这三个条件中选一个,补充到上面问题中,并完成解答.)22(10分)已知函数,设为的导数,(1)求,; (2)猜想的表达式,并证明你的结论参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

7、1C【解析】利用指数函数和对数函数的单调性比较、三个数与和的大小关系,进而可得出、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.2A【解析】依题意,如图以为坐标原点建立平面直角坐标系,表示出点的坐标,根据求出的坐标,求出边所在直线的方程,设,利用坐标表示,根据二次函数的性质求出最大值.【详解】解:依题意,如图以为坐标原点建立平面直角坐标系,由,因为点在线段的延长线上,设,解得,所在直线的方程

8、为 因为点在边所在直线上,故设当时故选:【点睛】本题考查向量的数量积,关键是建立平面直角坐标系,属于中档题.3A【解析】作出可行域,由,可得.当直线过可行域内的点时,最大,可得.再由基本不等式可求的最小值.【详解】作出可行域,如图所示由,可得.平移直线,当直线过可行域内的点时,最大,即最大,最大值为2.解方程组,得.,当且仅当,即时,等号成立.的最小值为8.故选:.【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.4A【解析】结合所给数字特征,我们可将每层数字表示成2的指数的形式,观察可知,每层指数的和成等比数列分布,结合等比数列前项和公式和对数恒等式即可求解【详解】如图,将数字塔中

9、的数写成指数形式,可发现其指数恰好构成“杨辉三角”,前10层的指数之和为,所以原数字塔中前10层所有数字之积为.故选:A【点睛】本题考查与“杨辉三角”有关的规律求解问题,逻辑推理,等比数列前项和公式应用,属于中档题5C【解析】先求出集合U,再根据补集的定义求出结果即可【详解】由题意得U=x|x24,xZ=x|-2x2,xZ=-2,-1,0,1,2,A=1,2,CUA=-2,-1,0故选C【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题6C【解析】由题意可利用等比数列的求和公式得莞草与蒲草n天后长度,进而可得:,解出即可得出【详解】由题意可得莞草与蒲草第n天

10、的长度分别为 据题意得:, 解得2n12, n21故选:C【点睛】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题7B【解析】考虑当时,有两个不同的实数解,令,则有两个不同的零点,利用导数和零点存在定理可得实数的取值范围.【详解】因为的图象上关于原点对称的点有2对,所以时,有两个不同的实数解.令,则在有两个不同的零点.又, 当时,故在上为增函数,在上至多一个零点,舍.当时,若,则,在上为增函数;若,则,在上为减函数;故,因为有两个不同的零点,所以,解得.又当时,且,故在上存在一个零点.又,其中.令,则,当时,故为减函数,所以即.因为,所以在上也存在一个零点.综上,当

11、时,有两个不同的零点.故选:B.【点睛】本题考查函数的零点,一般地,较为复杂的函数的零点,必须先利用导数研究函数的单调性,再结合零点存在定理说明零点的存在性,本题属于难题.8D【解析】先化简函数解析式,再根据函数的图象变换规律,可得所求函数的解析式为,再由正弦函数的对称性得解.【详解】,将函数图象上各点的横坐标伸长到原来的3倍,所得函数的解析式为,再向右平移个单位长度,所得函数的解析式为,,可得函数图象的一个对称中心为,故选D.【点睛】三角函数的图象与性质是高考考查的热点之一,经常考查定义域、值域、周期性、对称性、奇偶性、单调性、最值等,其中公式运用及其变形能力、运算能力、方程思想等可以在这些

12、问题中进行体现,在复习时要注意基础知识的理解与落实三角函数的性质由函数的解析式确定,在解答三角函数性质的综合试题时要抓住函数解析式这个关键,在函数解析式较为复杂时要注意使用三角恒等变换公式把函数解析式化为一个角的一个三角函数形式,然后利用正弦(余弦)函数的性质求解9A【解析】由,可得以及,而,代入即可得到答案.【详解】设公差为d,则解得,所以.故选:A.【点睛】本题考查等差数列基本量的计算,考查学生运算求解能力,是一道基础题.10D【解析】用列举法,通过循环过程直接得出与的值,得到时退出循环,即可求得.【详解】执行程序框图,可得,满足条件,满足条件,满足条件,由题意,此时应该不满足条件,退出循

13、环,输出S的值为.故选D【点睛】本题主要考查了循环结构的程序框图的应用,正确依次写出每次循环得到的与的值是解题的关键,难度较易.11C【解析】据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案【详解】根据题意可得集合所表示的区域即为如图所表示:的圆及内部的平面区域,面积为,集合,表示的平面区域即为图中的,根据几何概率的计算公式可得,故选:C【点睛】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型解决本题的关键是要准确求出两区域的面积12C【解析】先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函

14、数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据题意可得出,然后进行补集的运算即可【详解】根据题意知,故答案为:【点睛】本题考查列举法的定义、全集的定义、补集的运算,考查计算能力,属于基础题14【解析】作出不等式组所表示的可行域,利用平移直线的方法找出使得目标函数取得最小时对应的最优解,代入目标函数计算即可.【详解】作出不等式组所表示的可行域如下图所示:联立,解得,即点,平移直线,当直线经过可行域的顶点时,该直线在轴上的截距最小,此时取最小值,即.故答案为:.【点睛】本题考查简单的

15、线性规划问题,考查线性目标函数的最值问题,考查数形结合思想的应用,属于基础题.15【解析】先推导出函数的周期为,可得出,代值计算,即可求出实数的值.【详解】由于函数是定义在上的奇函数,则,又该函数的图象关于直线对称,则,所以,则,所以,函数是周期为的周期函数,所以,解得.故答案为:.【点睛】本题考查利用函数的对称性计算函数值,解题的关键就是结合函数的奇偶性与对称轴推导出函数的周期,考查推理能力与计算能力,属于中等题.1660【解析】根据二项式定理展开式通项,即可求得的系数.【详解】因为,所以,则所求项的系数为.故答案为:60【点睛】本题考查了二项展开式通项公式的应用,指定项系数的求法,属于基础

16、题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析;(2)见解析【解析】(1)取的中点构造平行四边形,得到,从而证出平面;(2)先证平面,再利用面面垂直的判定定理得到平面平面【详解】证明:(1)如图,取的中点,连接,是棱的中点,底面是矩形,且,又,分别是棱,的中点,且,且,四边形为平行四边形,又平面,平面,平面;(2),点是棱的中点,又,平面,平面,底面是矩形,平面,平面,且,平面,又平面,又平面,平面,且,平面,又平面,平面平面【点睛】本题主要考查线面平行的判定,面面垂直的判定,首选判定定理,是中档题18(1)(2)【解析】(1)由基本量法,求出公比后可得通项

17、公式;(2)求出,用裂项相消法求和【详解】解:(1)设等比数列的公比为又因为,所以解得(舍)或所以,即(2)据(1)求解知,所以所以【点睛】本题考查求等比数列的通项公式,考查裂项相消法求和解题方法是基本量法基本量法是解决等差数列和等比数列的基本方法,务必掌握19(1)能;(2)(i)男生有人,女生有人;(ii),分布列见解析【解析】(1)根据所给数据可完成列联表由总人数及女生人数得男生人数,由表格得达标人数,从而得男生中达标人数,这样不达标人数随之而得,然后计算可得结论;(2)由达标人数中男女生人数比为可得抽取的人数,总共选2人,女生有4人,的可能值为0,1,2,分别计算概率得分布列,再由期望

18、公式可计算出期望【详解】(1)列出列联表,所以在犯错误的概率不超过的前提下能判断“课外体育达标”与性别有关(2)(i)在“锻炼达标”的学生中,男女生人数比为,用分层抽样方法抽出人,男生有人,女生有人(ii)从参加体会交流的人中,随机选出人发言,人中女生的人数为,则的可能值为,则,可得的分布列为:可得数学期望【点睛】本题考查列联表与独立性检验,考查分层抽样,随机变量的概率分布列和期望主要考查学生的数据处理能力,运算求解能力,属于中档题20(1)见解析;(2)【解析】(1)先由线面垂直的判定定理证明平面,再证明线线垂直即可;(2)建立空间直角坐标系,求平面的一个法向量与平面的一个法向量,再利用向量数量积运算即可.【详解】(1)证明:连接,由平行且相等,可知四边形为平行四边形,所以.由题意易知,所以,因为,所以平面,又平面,所以.(2)设,由已知可得:平面平面,所以,同理可得:,所以四边形为平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论