版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1复数的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限2复数满足为虚数单位),则的虚部为( )ABCD3函数的一个零点在区间内,则实数a的取值范围是( )
2、ABCD4设过抛物线上任意一点(异于原点)的直线与抛物线交于两点,直线与抛物线的另一个交点为,则( )ABCD5设点,不共线,则“”是“”( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分又不必要条件6在原点附近的部分图象大概是( )ABCD7把函数图象上各点的横坐标伸长为原来的2倍,纵坐标不变,再将图象向右平移个单位,那么所得图象的一个对称中心为( )ABCD8已知函,则的最小值为( )AB1C0D9在边长为1的等边三角形中,点E是中点,点F是中点,则( )ABCD10已知与之间的一组数据:12343.24.87.5若关于的线性回归方程为,则的值为( )A1.5B2.5C3.5D
3、4.511已知,若,则等于( )A3B4C5D612下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是( )A深圳的变化幅度最小,北京的平均价格最高B天津的往返机票平均价格变化最大C上海和广州的往返机票平均价格基本相当D相比于上一年同期,其中四个城市的往返机票平均价格在增加二、填空题:本题共4小题,每小题5分,共20分。13小李参加有关“学习强国”的答题活动,要从4道题中随机抽取2道作答,小李会其中的三道题,则抽到的2道题小李都会的概率为_.14双曲线的焦距为_,渐近线方程为_15在九章算术中,将底面为
4、矩形且有一条侧棱与底面垂直的四棱锥称之为阳马如图,若四棱锥为阳马,侧棱底面,且,设该阳马的外接球半径为,内切球半径为,则_16五声音阶是中国古乐基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徵、羽,如果把这五个音阶全用上,排成一个五个音阶的音序,且要求宫、羽两音阶不相邻且在角音阶的同侧,可排成_种不同的音序.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在棱长为的正方形中,分别为,边上的中点,现以为折痕将点旋转至点的位置,使得为直二面角(1)证明:;(2)求与面所成角的正弦值18(12分)设抛物线的焦点为,准线为,为抛物线过焦点的弦
5、,已知以为直径的圆与相切于点.(1)求的值及圆的方程;(2)设为上任意一点,过点作的切线,切点为,证明:.19(12分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数, 对于符合题意的任意,当 时均有?若存在,求出所有的值;若不存在,请说明理由20(12分)设函数,()求曲线在点(1,0)处的切线方程;()求函数在区间上的取值范围21(12分)已知曲线的极坐标方程为,直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)已知点,直线与曲线交于、两点,求.22(10分)在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分
6、数,满分100分,按照大于或等于80分的为优秀,小于80分的为合格,为了解学生的在该维度的测评结果,在毕业班中随机抽出一个班的数据.该班共有60名学生,得到如下的列联表:优秀合格总计男生6女生18合计60已知在该班随机抽取1人测评结果为优秀的概率为.(1)完成上面的列联表;(2)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?(3)现在如果想了解全校学生在该维度的表现情况,采取简单随机抽样方式在全校学生中抽取少数一部分来分析,请你选择一个合适的抽样方法,并解释理由.附:0.250.100.0251.3232.7065.024参考答案一、选择题:本题共12小题,每小题5分,共6
7、0分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】试题分析:由题意可得:. 共轭复数为,故选A.考点:1.复数的除法运算;2.以及复平面上的点与复数的关系2C【解析】,分子分母同乘以分母的共轭复数即可.【详解】由已知,故的虚部为.故选:C.【点睛】本题考查复数的除法运算,考查学生的基本运算能力,是一道基础题.3C【解析】显然函数在区间内连续,由的一个零点在区间内,则,即可求解.【详解】由题,显然函数在区间内连续,因为的一个零点在区间内,所以,即,解得,故选:C【点睛】本题考查零点存在性定理的应用,属于基础题.4C【解析】画出图形,将三角形面积比转为线段长度比,进而转为坐标的
8、表达式。写出直线方程,再联立方程组,求得交点坐标,最后代入坐标,求得三角形面积比.【详解】作图,设与的夹角为,则中边上的高与中边上的高之比为,设,则直线,即,与联立,解得,从而得到面积比为.故选:【点睛】解决本题主要在于将面积比转化为线段长的比例关系,进而联立方程组求解,是一道不错的综合题.5C【解析】利用向量垂直的表示、向量数量积的运算,结合充分必要条件的定义判断即可.【详解】由于点,不共线,则“”;故“”是“”的充分必要条件.故选:C.【点睛】本小题主要考查充分、必要条件的判断,考查向量垂直的表示,考查向量数量积的运算,属于基础题.6A【解析】分析函数的奇偶性,以及该函数在区间上的函数值符
9、号,结合排除法可得出正确选项.【详解】令,可得,即函数的定义域为,定义域关于原点对称,则函数为奇函数,排除C、D选项;当时,则,排除B选项.故选:A.【点睛】本题考查利用函数解析式选择函数图象,一般要分析函数的定义域、奇偶性、单调性、零点以及函数值符号,考查分析问题和解决问题的能力,属于中等题.7D【解析】试题分析:把函数图象上各点的横坐标伸长为原来的倍(纵坐标不变),可得的图象;再将图象向右平移个单位,可得的图象,那么所得图象的一个对称中心为,故选D.考点:三角函数的图象与性质.8B【解析】,利用整体换元法求最小值.【详解】由已知,又,故当,即时,.故选:B.【点睛】本题考查整体换元法求正弦
10、型函数的最值,涉及到二倍角公式的应用,是一道中档题.9C【解析】根据平面向量基本定理,用来表示,然后利用数量积公式,简单计算,可得结果.【详解】由题可知:点E是中点,点F是中点,所以又所以则故选:C【点睛】本题考查平面向量基本定理以及数量积公式,掌握公式,细心观察,属基础题.10D【解析】利用表格中的数据,可求解得到代入回归方程,可得,再结合表格数据,即得解.【详解】利用表格中数据,可得又,解得故选:D【点睛】本题考查了线性回归方程过样本中心点的性质,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.11C【解析】先求出,再由,利用向量数量积等于0,从而求得.【详解】由题可知,因为,所
11、以有,得,故选:C.【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.12D【解析】根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故
12、选:D【点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】从四道题中随机抽取两道共6种情况,抽到的两道全都会的情况有3种,即可得到概率.【详解】由题:从从4道题中随机抽取2道作答,共有种,小李会其中的三道题,则抽到的2道题小李都会的情况共有种,所以其概率为.故答案为:【点睛】此题考查根据古典概型求概率,关键在于根据题意准确求出基本事件的总数和某一事件包含的基本事件个数.146 【解析】由题得 所以焦距,故第一个空填6.由题得渐近线方程为.故第二个空填.15【解析】该阳马补形所得到的长方体的对角线为外接球的直径,由此能求出
13、,内切球在侧面内的正视图是的内切圆,从而内切球半径为,由此能求出【详解】四棱锥为阳马,侧棱底面,且,设该阳马的外接球半径为,该阳马补形所得到的长方体的对角线为外接球的直径,侧棱底面,且底面为正方形,内切球在侧面内的正视图是的内切圆,内切球半径为,故故答案为【点睛】本题考查了几何体外接球和内切球的相关问题,补形法的运用,以及数学文化,考查了空间想象能力,是中档题解决球与其他几何体的切、接问题,关键是能够确定球心位置,以及选择恰当的角度做出截面.球心位置的确定的方法有很多,主要有两种:(1)补形法(构造法),通过补形为长方体(正方体),球心位置即为体对角线的中点;(2)外心垂线法,先找出几何体中不
14、共线三点构成的三角形的外心,再找出过外心且与不共线三点确定的平面垂直的垂线,则球心一定在垂线上.161【解析】按照“角”的位置分类,分“角”在两端,在中间,以及在第二个或第四个位置上,即可求出.【详解】若“角”在两端,则宫、羽两音阶一定在角音阶同侧,此时有种;若“角”在中间,则不可能出现宫、羽两音阶不相邻且在角音阶的同侧;若“角”在第二个或第四个位置上,则有种;综上,共有种.故答案为:1【点睛】本题主要考查利用排列知识解决实际问题,涉及分步计数乘法原理和分类计数加法原理的应用,意在考查学生分类讨论思想的应用和综合运用知识的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演
15、算步骤。17(1)证明见详解;(2)【解析】(1)在折叠前的正方形ABCD中,作出对角线AC,BD,由正方形性质知,又/,则于点H,则由直二面角可知面 ,故.又,则面,故命题得证;(2)作出线面角,在直角三角形中求解该角的正弦值.【详解】解:(1)证明:在正方形中,连结交于因为/,故可得,即又旋转不改变上述垂直关系,且平面,面,又面,所以(2)因为为直二面角,故平面平面,又其交线为,且平面,故可得底面,连结,则即为与面所成角,连结交于,在中,在中,所以与面所成角的正弦值为【点睛】本题考查了线面垂直的证明与性质,利用定义求线面角,属于中档题.18(1)2,;(2)证明见解析.【解析】(1)由题意
16、得的方程为,根据为抛物线过焦点的弦,以为直径的圆与相切于点.利用抛物线和圆的对称性,可得,圆心为,半径为2.(2)设,的方程为,代入的方程,得,根据直线与抛物线相切,令,得,代入,解得.将代入的方程,得,得到点N的坐标为,然后求解.【详解】(1)解:由题意得的方程为,所以,解得.又由抛物线和圆的对称性可知,所求圆的圆心为,半径为2.所以圆的方程为.(2)证明:易知直线的斜率存在且不为0,设,的方程为,代入的方程,得.令,得,所以,解得.将代入的方程,得,即点N的坐标为,所以,故.【点睛】本题主要考查抛物线的定义几何性质以及直线与抛物线的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档
17、题.19 (1);(2).【解析】(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,化简得,因此 ,最后根据导数研究对应函数单调性,确定对应函数最值,即得取值集合.【详解】(1),当时,对恒成立,与题意不符,当,时,即函数在单调递增,在单调递减,和时均有,解得:,综上可知:的取值范围;(2)由(1)可知,则,由的任意性及知,且,故,又,令,则,且恒成立,令,而,时,时,令,若,则时,即函数在单调递减,与不符;若,则时,即函数在单调递减,与式不符;若,解得,此时恒成立,即函数在单调递增,又,时,;时,符合式,综上,存在唯一实数符合题意.
18、【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.20(1)(2)【解析】分析:(1)先断定在曲线上,从而需要求,令,求得结果,注意复合函数求导法则,接着应用点斜式写出直线的方程;(2)先将函数解析式求出,之后借助于导数研究函数的单调性,从而求得函数在相应区间上的最值.详解:()当,. , 当, 所以切线方程为.(),因为,所以.令,则在单调递减, 因为,所以在上增,在单调递增. , 因为,所以在区间上的值域为.点睛:该题考查的是有关应用导数研究函数的问题,涉及到的知识点有导数的几何意义,曲线在某个点处的切线方程的求法,复合函数求导,函数在给定区间上的最值等,在解题的过程中,需要对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生消防演练课
- 超星食品安全组日常饮食
- 部编版八年级地理上册第三章第一节《自然资源的基本特征》课件
- 放射性皮炎的护理重点
- 1.1 物质结构研究的内容课件高二上学期化学苏教版(2019)选择性必修第二册
- 彩虹教案反思
- 虎和兔说课稿
- 函数的说课稿
- 产科科室护理一级质控
- 被针刺伤应急演练
- 《西游记》导读(12-15回)
- 出租车行业管理方案
- 【课件】第四章《第三节平面镜成像》课件人教版物理八年级上册
- DB34∕T 2290-2022 水利工程质量检测规程
- 2024年中国彩屏GPS手持机市场调查研究报告
- 2021年山东省职业院校技能大赛导游服务赛项-导游英语口语测试题库
- 2024年广东省清远市佛冈县事业单位公开招聘工作人员历年高频500题难、易错点模拟试题附带答案详解
- 文印竞标合同范本
- 2024年广东省深圳市中考历史试题
- 2024至2030年全球及中国强光手电筒行业发展现状调研及投资前景分析报告
- 2024至2030年中国汽车EPS无刷电机行业市场前景预测与发展趋势研究报告
评论
0/150
提交评论