版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第五章相交线与平行线第五章第一节相交线第五章第一节第一课时教学目标 1.通过动手观察、操作、推断、交流等数学活动,进一步开展空间观念,培养识图能力、推理能力和有条理表达能力.毛 2.在具体情境中了解邻补角、对顶角, 能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些问题.重点、难点 重点:邻补角、对顶角的概念,对顶角性质与应用.难点:理解对顶角相等的性质的探索.教学手段与方法师生共同探讨教学准备三角尺 课件教学过程一、读一读,看一看 教师在轻松欢快的音乐中演示第五章章首图片为主体的课件. 学生欣赏图片,阅读其中的文字. 师生共同总结:我们生活的世界中,蕴涵着大量的相交线和
2、平行线. 本章要研究相交线所成的角和它的特征,相交线的一种特殊形式即垂直,垂线的性质, 研究平行线的性质和平行的判定以及图形的平移问题.二、观察剪刀剪布的过程,引入两条相交直线所成的角 教师出示一块布片和一把剪刀,表演剪刀剪布过程,提出问题:剪布时,用力握紧把手,引发了什么变化?进而使什么也发生了变化? 学生观察、思想、答复,得出: 握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小. 如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大. 教师点评:如果把剪刀的构造看作两条相交的直线,以上就关系到两条相交直线所成的角的问题,本节课就是探讨两条相交线所成的角
3、及其特征.三、认识邻补角和对顶角,探索对顶角性质1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角? 各对角的位置关系如何?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流. 当学生直观地感知角有“相邻、“对顶关系时, 教师引导学生用几何语言准确地表达,如: AOC和BOC有一条公共边OC,它们的另一边互为反向延长线. AOC和BOD有公共的顶点O,而是AOC的两边分别是BOD两边的反向延长线. 2.学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有“相邻关系的两角互补,“对顶关系的两角相等.3.学生根据观察和度量完成下表:两
4、直线相交所形成的角分类位置关系数量关系 教师再提问:如果改变AOC的大小, 会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念. (1)师生共同定义邻补角、对顶角. 有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角. 如果两个角有一个公共顶点, 而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角. (2)初步应用. 练习1:以下说法,你同意吗?如果错误,如何订正. 邻补角的“邻就是“相邻,就是它们有一条“公共边,“补就是“互补,就是这两角的另一条边共同一条直线上. 邻补角可看成是平角被过它顶点的一条射线分成的两个角. 邻补角是互补的两个角,互补的两
5、个角也是邻补角? 5.对顶角性质. (1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由. (2)教师把说理过程,标准地板书: 在图1中,AOC的邻补角是BOC和AOD,所以AOC与BOC互补,AOC 与AOD互补,根据“同角的补角相等,可以得出AOD=BOC,类似地有AOC=BOD. 教师板书对顶角性质:对顶角相等. 强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系. (3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.四、稳固运用1.例:如图,直线a,b相交,1=40,求2,3,
6、4的度数. 教学时,教师先让学生辨让未知角与角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出标准的求解过程. 2.练习: (1)课本P5练习.(2)补充:判断以下图中是否存在对顶角.五、作业 课本P9.1,2,P10.7,8. 垂线第五章第一节第二课时教学目标一、素质教育目标一知识教学点1使学生掌握垂线的概念。2会用三角尺或量角器过一点画一条直线的垂线。3使学生理解并掌握垂线的第一个性质。二能力训练点1通过对垂线定义做正、反两方面的推理,培养学生的逻辑推理能力。2通过垂线的画法,进一步培养学生的实际动手操作能力。三德育渗透点使学生初步树立辩证唯物主义观点。四重点和难点分析1本节的
7、重点是会用两直线垂直的定义判定两条直线垂直和点到直线的距离的概念.2本节的难点是空间直线与平面、平面与平面的垂直关系.二、学法引导1教师教法:活动投影片演示直观教学法,引导发现法2学生学法:在教师的指导下,自主式学习教具学具准备三角尺、量角器、自制胶片教学手段1通过创设情境,复习根底知识,引入课题2通过教师引导提问,学生思考、互相表达和纠正,教师点拨,练习稳固新课3通过师生互答完成归纳小结教学步骤一明明目标通过画垂线,使学生既能理解并掌握垂线的概念和第一个性质,又能提高学生的动手操作能力二整体感知以情境引入课题,以引导学生讨论思考、动手操作和教师点拨相结合完成教学任务,以练习检测为稳固检查手段
8、,强化教学内容三教学过程创设情境,复习引入提出问题:如右图,1AOC的对顶角是哪个角?这两个角的关系怎样?2AOC的邻补角有几个?是哪几个角? 教师演示:活动投影片转动直线CD的同时,用量角器量直线AB、CD相交所得的角,多变换几种位置一直转到使直线CD与AB所成的角有一个角AOC90如右图学生活动:当AOC90,口答BOD、AOD、BOC等于多少度?为什么?这种位置关系有几种?直线AB、CD的位置关系怎样?学生答复完后,引入课题【板书】2.2垂线【教法说明】因为对顶角、邻补角及对顶角的性质,是建立垂直概念的根底之上,所以在讲新课前要复习稳固这些内容探究新知,讲授新课提出问题:什么样的两条直线
9、互相垂直?学生活动:学生思考上面的问题,同桌相互表达,互相纠正补充,语句通顺后举手答复教师根据学生答复情况,适当加以引导点拨,然后板书:【板书】 1垂直定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的里线,它们的支点叫做垂足提出以下问题帮助学生理解定义投影显示,投影片11“有一个角是直角是指四个角中的哪一个角?2“互相垂直是什么意思?3相交的两条直线都垂直吗?【教法说明】用活动投影片演示“两条直线互相垂直这个概念的产生过程,使学生形成对概念的感性认识再回过头来进行定义,并且从演示过程中看到垂直是两条直线相交的一种特殊情况,认识了事物间的开
10、展变化的辩证关系,提出问题帮助学生理解概念,比教师单纯“强调效果更好学生活动:让学生举出日常生活和生产中常见的垂直关系的实例十字路口的两条道路;方格本的横线和竖线;铅垂线和水平线【教法说明】通过举例,启发学生广泛联想,一方面让学生知道两直线垂直的概念是从实物中抽象出来的;另一方面使理论与实际相联系2垂直的记法、读法和判定学生活动:让学生自己尝试学习,阅读课本第60页的内容,然后师生间相互交流归纳:直线垂直的记法读法:直线AB、CD互相垂直,记作“ABCD域“CDAB,读作“AB垂直于CD,如果垂足为O,记作“ABCD,垂足为O如图右上垂直判定:AOC=90,ABCD垂直的定义ABCD,AOC9
11、0垂直的定义学生活动:用AOD、BOD或BOC让学生重复练习正、反两步推理【教法说明】让学生自己尝试学习,可充分发挥学生的积极性、主动性,对垂直定义做正、反两方面的推理可加深学生对定义的理解,一方面为了渗透符号推理格式,熟悉符号的使用;另一方面可加深学生对定义的理解,定义既可以作判定用,又可以当性质用3垂线的画法及性质学生活动:让学生用三角板或量角器,过直线上一点或者直线外一点画直线的垂线,答复过直线上直线外一点能不能画这条直线的垂线?能画几条?请一个学生到黑板上去画通过画图,得垂线的第一条性质:过一点有且只有一条直线与直线垂直提出问题:1“过一点包括几种情况?2“有且只有是什么意思?“有表示
12、存在,“只有表示惟一【教法说明】垂线的性质放手让学生自己动手画图,自己总结,培养了学生动手,动脑,发现问题和解决问题的能力,到达能力培养的目标学生活动:让学生尝试画一条线段或射线的垂线一个学生板演【教法说明】学生画图时,教师巡回指导,发现问题,及时纠正,使学生加深印象,进一步培养学生动手操作能力布置作业 课本第70页习题2.1A组第5题。同位角、内错角、同旁内角教案第五章第一节第三课时一、素质教育目标一知识教学点1理解同位角、内错角、同旁内角的概念2结合图形识别同位角、内错角、同旁内角二能力训练点1通过变式图形的识图训练,培养学生的识图能力2通过例题口答“为什么,培养学生的推理能力三德育渗透点
13、从复杂图形分解为根本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点四美育渗透点通过“三线八角根本图形,使学生认识几何图形的位置美五重点难点分析本节教学的重点是同位角、内错角、同旁内角的概念难点为在较复杂的图形中识别同位角、内错角、同旁内角掌握同位角、内错角、同旁内角的相关概念是进一步学习平行线、四边形等后续知识的根底二、学法引导 1教师教法:尝试指导,讨论评价、变式练习、回授2学生学法:主动思考,相互研讨,自我归纳三、教具学具准备投影仪、三角板、自制胶片四、教学步骤一明确目标使学生掌握“三线八角,并能在图形中进行辨识二整体感知以复习旧知创设情境引入课
14、题,以指导阅读、设计问题、小组讨论学习新知,以变式练习稳固新知三教学过程创设情境,复习导入答复以下问题:1如图,1与3,2与4是什么角?它们的大小有什么关系?2如图,1与2,l与4是什么角?它们有什么关系?3如图,三条直线AB、CD、EF交于一点O,那么图中有几对对顶角,有几对邻补角?4如图,三条直线AB、CD、EF两两相交,那么图中有几对对项角,有几对邻补角?5三条直线相交除上述两种情况外,还有其他相交的情形吗?学生答后,教师出示复合投影片1,在1、2题的图上添加一条直线CD,使CD与EF相交于某一点如图,直线AB、CD都与EF相交或者说两条直线AB、CD被第三条直线EF所截,这样图中就构成
15、八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系【板书】 2.3同位角、内错角、同旁内角【教法说明】通过复合投影片演示了同位角、内错角、同旁内角的产生过程,并从演示过程中看到,这些角也是与相交线有关系的角,两条直线被第三条直线所截,是相交线的又一种情况认识事物间是开展变化的辩证关系尝试指导,学习新知1学生自己尝试学习,阅读课本第67页例题前的内容2设计以下问题,帮助学生正确理解概念1同位角:4和8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗?2内错角:3和5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗?3
16、同旁内角:4和5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗?4同位角和同分内角在位置上有什么相同点和不同点?内错角和同旁内角在位置上有什么相同点和不同点?5这三类角的共同特征是什么?3对上述问题以小组为单位展开讨论,然后学生间互相评议4教师对学生讨论过程中所发表的意见进行评判,归纳总结在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角的图形中的主线是截线,抓住了截线,再利用图形结构特征F、Z、U判断问题就迎刃而解投影显示投影片2例题 如图,直线DE、BC被直线AB所截,1l与2,1与3,1与4各是什么关系的角?2如果14,那么1和2相等吗?1和3互补吗
17、?为什么?教法说明例题较简单,让学生口答,答复“为什么只要求学生能用文字语言把主要根据说出来,讲明道理即可,不必太标准,等学习证明时再严格训练变式训练,稳固新知投影显示投影片3【教法说明】此题是对简单变式图形的训练,以培养学生的识图能力,第2题指明第三条直线是c,即a和b被c所截,如c和a被占所截,那么结果截然不同,因此遇到题目先分清哪两条直线被哪一条直线所栽,这是解题的关键和前提投影显示投影片4【教法说明】本组练习是由同位角、内错角和同旁内角找出构成它们的“三线,或是由“三线八角图形判断同位角、内错角、同旁内角这两者都需要进行这样的三个步骤,一看角的顶点;二看角的边;三看角的方位这“三看又离
18、不开主线截线确实定,让学生知道:无论图形的位置怎样变动,图形多么复杂,都要以截线为主线不变,去解决万变的图形,另外遇到较复杂的图形,也可以从分解图形入手,把复杂图形化为假设干个根本图形如第2题由条件结合所求局部,对各个小题分别分解图形如下:四总结、扩展1本节研究了一条直线分别和两条直线相交,所得八个角的位置关系,掌握区分这些角位置关系的关键是分清哪条线是截线,哪些线是被截直线,在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,只要抓住三线中的主线截线,就能正确识别这三类角2相交直线3教师指着图中的一条被截直线,问:“这条直线绕着与截线着与截线的交点旋转,当同位角相等时,两条被截直线是什么
19、关系?八、布置作业课本第72页B组第4题平行线第五章第二节第一课时一教学目标1.了解平行线的概念,理解同一平面内两条直线的两种位置关系;2.认识平行公理1、2;3.了解什么叫公理.重点:平行线的公理难点:利用平行线公理解决问题二教学手段与方法师生共同探讨三教学准备三角尺四教学过程探索1如图,直线AB和直线外一点P,你能过点P画一条直线与AB平行吗?把你的画法与同伴交流,看谁的方法好.思考:在同一平面内,两条直线有几种位置关系?想一想:是否存在既不平行又不相交的两条直线?探索2在一张半透明的纸上任意画一条直线AB,在直线外任取一点P,你能折出过点P的平行线吗?试一试,并把你的折法与同伴交流.猜一
20、猜如图,经过直线AB外一点P,可以画两条直线和这条直线平行吗?平行公理1经过直线外一点,有且只有一条直线与这条直线平行(见P14).释义本书中所说的根本领实是人们在长期实践中总结出来的结论, 根本领实也称为公理.公理可以作为以后推理的依据.探索3如图,P是直线AB外一点,CD与EF相交于P.假设CD与AB平行,那么EF与AB平行吗?为什么?探索4如图,假设CDAB,且EFAB,那么CD与EF有可能相交吗?为什么?平行公理2如果两条直线都和第三条直线平行,那么这两条直线也互相平行.友情提示:假设a=b=c(字母表示数),那么,a=c ,根据的是_. 假设ac, bc(字母表示直线),那么ab.根
21、据的是_.练习如图,ABC,分别取AB、AC的中点D、E,连结D、E.猜一猜:直线DE与直线BC之间有怎样的位置关系?另外再画一个三角形看一看,是否存在同样的位置关系.作业1.用剪刀剪一块任意四边形的硬纸板(下一节课要用).2.你会画梯形吗?你会画等腰梯形吗?试一试(工具不限).3.如图,四边形ABCD,分别取AB、BC、CD、DA的中点E、F、G、H,顺次连接EF、FG、GH、HE.你发现了什么?再画一个四边形试一试.平行线的判定第五章第二节第二课时一、教学目标1了解推理、证明的格式,掌握平行线判定公理和第一个判定定理2会用判定公理及第一个判定定理进行简单的推理论证3通过模型演示,即“运动变
22、化的数学思想方法的运用,培养学生的“观察分析和“归纳总结的能力4. 重点:在观察实验的根底上进行公理的概括与定理的推导 5.难点:判定定理的形成过程中逻辑推理及书写格式二、学法引导1教师教法:启发式引导发现法2学生学法:独立思考,主动发现三、教具学具准备三角板、投影胶片、投影仪、计算机四、教学步骤创设情境,引出课题师:上节课我们学习了平行线、平行公理及推论,请同学们判断以下语句是否正确,并说明理由出示投影1两条直线不相交,就叫平行线2与一条直线平行的直线只有一条3如果直线 、 都和 平行,那么 、 就平行学生活动:学生口答上述三个问题【教法说明】通过三个判断题,使学生回忆上节所学知识,第1题在
23、于强化平行线定义的前提条件“在同一平面内,第2题不仅回忆平行公理,同时使学生认识学习几何,语言一定要准确、标准,同一问题在不同条件下,就有不同的结论,第3题复习稳固平行公理推论的同时提示学生,它也是判定两条直线平行的方法师:测得两条直线相交,所成角中的一个是直角,能判定这两条直线垂直吗?根据什么?学生:能判定垂直,根据垂直的定义师:在同一平面内不相交的两条直线是平行线,你有方法测定两条直线是平行线吗?学生活动:学生思考,如何测定两条直线是否平行?教师在学生思考未得结论的情况下,指出不能直接利用手行线的定义来测定两条直线是否平行,必须找其他可以测定的方法,有什么方法呢?学生活动:学生思考,在前面
24、复习平行公理推论的情况下,有的学生会提出,再作一条直线 ,让 ,再看 是否平行于 就可以了师:这种想法很好,那么,如何作 ,使它与 平行?假设作出 后,又如何判断 是否与 平行?学生活动:学生思考老师的提问,意识到刚刚的答复,似是而非,不能解决问题 师:显然,我们的问题没有得到解决,为此我们来寻找另外一些判定方法,就是今天我们要学习的平行线的判定板书课题板书2.5平行线的判定1【教法说明】由垂线定义可以来判断两线是否垂直,学生自然想到要用平行线定义来判断,但我们无法测定直线是否不相交,也就不能利用定义来判断这时,学生会考虑平行公理推论,此时教师只须简单地追问,就让学生弄清问题未能解决,由此引入
25、新课内容探究新知,讲授新课 教师给出像课本第78页图220那样的两条直线被第三条直线所截的模型,转动 ,让学生观察, 转动到不同位置时, 的大小有无变化,再让 从小变大,说出直线 与 的位置关系变化规律【教法说明】让学生充分观察,在教师的启发式提问下,分析、思考、总结出结论图1学生活动: 转动到不同位置时, 也随着变化,当 从小变大时,直线 从原来在右边与直线 相交,变到在左边与 相交师:在这个过程中,存在一个与 不相交即与 平行的位置,那么 多大时,直线 呢?也就是说,我们假设判定两条直线平行,需要找角的关系师:下面先请同学们回忆平行线的画法,过直线 外一点 画 的平行线 学生活动:学生在练
26、习本上完成,教师在黑板上演示见图1师:由刚刚的演示,请同学们考虑,画平行线的过程,实际上是保证了什么?图2学生:保证了两个同位角相等师:由此你能得到什么猜测?学生:两条直线被第三条直线所截,如果同位角相等,那么两条直线平行师:我们的猜测正确吗?会不会有某一特定的时刻,即使同位角不等,而两条直线也平行呢?教师用计算机演示运动变化过程在观察实验之前,让学生看清 角和 角如图2,而后开始实验,让学生充分观察并讨论能得出什么结论学生活动:学生观察、讨论、分析总结了,当 时, 不平行 ,而无论 取何值,只要 , 、 就平行图3教师引导学生自己表达出结论,并告诉学生这个结论称为平行线的判定公理板书两条直线
27、被第三条直线所截,如果同位角相等,那么这两条直线平行简单说成:同位角相等,两直线平行即: 见图3, 同位角相等,两直线平行【教法说明】通过实际画图和用计算机演示运动变化过程,让学生确信公理的正确尝试反应,稳固练习出示投影图41如图4, , 吗? 2 ,当 时,就能使 【教法说明】这两个题目旨在稳固所学的判定公理,对于第2题是结论,找出使它成立的题设,这是证明问题时应掌握的一种思考方法,要求学生逐步学会执因导果和执果索因的思考方法,教师在教学时要注意逐渐培养学生的这种数学思想 出示投影直线 、 被直线 所截图51见图5,如果 ,那么 与 有什么关系?2 与 有什么关系?3 与 是什么位置关系的一
28、对角?学生活动:学生观察,思考分析,给出答案: 时, , 与 相等, 与 是内错角师: 与 满足什么条件,可以得到 ?为什么?学生活动: ,因为 ,通过等量代换可以得到 师: 时,你进而可以得到什么结论?学生活动: 师:由此你能总结出什么正确结论?学生活动:内错角相等,两直线平行师:也就是说,我们得到了判定两直线平行的另一个方法:板书两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行简单说成:内错角相等,两直线平行【教法说明】通过教师的启发、引导式提问法,引导学生自己去发现角之间的关系,进而归纳总结出结论,主要采用探讨问题的方式,能够培养学生积极思考、善于动脑分析的良好学习习惯师:上
29、面的推理过程,可以写成 , 对顶角相等, 已证, 同位角相等,两直线平行【教法说明】这里的推理过程可以放手让学生试着说,这样才能使学生大胆尝试,培养他们勇于进取的精神教师指出:方括号内的“ ,就是上面刚刚得到的“ ,在这种情况下,方括号内这一步可以省略尝试反应,稳固练习出示投影1如图1,直线 、 被直线 所截1量得 , ,就可以判定 ,它的根据是什么?2量得 , ,就可以判定 ,它的根据是什么?2如图2, 是 的延长线,量得 1从 ,可以判定哪两条直线平行?它的根据是什么?2从 ,可以判定哪两条直线平行?它的根据是什么?图1图2学生活动:学生口答【教法说明】这组题旨在稳固平行线的判定公理和判定
30、方法的掌握,使学生熟悉并会用于解决简单的说理问题五总结扩展 2结合判一定理的证明过程,熟悉表达推理证明的要求,初步了解推理证明的格式六、布置作业课本第97页习题2.2组第4、5、612题平行线的性质第五章第三节第一课时教学目标:1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算2.通过本节课的教学,培养学生的概括能力和“观察猜测证明的科学探索方法,培养学生的辩证思维能力和逻辑思维能力3.培养学生的主体意识,向学生渗透讨论的数学思想,培养学生思维的灵活性和广阔性教学重点:平行线性质的研究和发现过程是本节课的重点教学难点:正确区分平行线的性质和判定是本节课的难点教学方法:开放式 师生互
31、动教学准备三角尺教学过程:一、复习1.请同学们先复习一下前面所学过的平行线的判定方法,并说出它们的和结论分别是什么?2、把这三句话和结论颠倒一下,可得到怎样的语句?它们正确吗?3、是不是原本正确的话,颠倒一下前后顺序,得到新的一句话,是否一定正确?试举例说明。如、“假设a=b,那么a2=b2是正确的,但“假设a2=b2,那么a=b是错误的。又如“对顶角相等是正确的。但“相等的角是对顶角那么是错误的。因此,原本正确的话将它倒过来说后,它不一定正确,此时它的正确与否要通过证明。二、新课1、我们先看刚刚得到的第一句话“两直线平行,同位角相等。先在请同学们画两条平行线,然后画几条直线和平行线相交,用量
32、角器测量一下,它们产生的几组同位角是否相等?上一节课,我们学习的是“同位角相等,两直线平行,此时,两直线是否平行是未知的,要我们通过同位角是否相等来判定,即是用来判定两条直线是否平行的,故我们称之为“两直线平行的判定公理。而这句话,是“两直线平行,同位角相等是“平行从而得到“同位角相等,因为平行是作为条件,因此,我们把这句话称为“平行线的性质公理,即:两条平行线被第三条线所截,同位角相等。简单说成:两直线平行,同位角相等。2、现在我们来用这个性质公理,来证明另两句话的正确性。想想看,“两直线平行,内错角相等这句话有哪些条件,由哪些图形组成?:如图,直线ab求证:114;212180证明:ab1
33、=3两直线平行,同位角相等又34对顶角相等142ab13两直线平行,同位角相等又23180邻补角的定义12180思考:如何用1来证明2?例1、如图,是梯形有上底的一局部,已经量得1115,D100,梯形另外两个角各是多少度?解:梯形上下底互相平行A与B互补,D与C互补B18011565C18010080答:梯形的另外两个角分别是65,80小结:平行性质与判定的区别适当总结几何的学习,既可以培养学生的逻辑思维能力,也可以培养学生分析问题,解决问题的能力对于好的学生,可以引导他们总结如何学好几何注意文字语言,图形语言,符号语言间的相互转化对简单的题目,能做到想得明白,写得清楚,书写逐渐标准作业:P
34、87 9、10命题、定理第五章第三节第二课时学习目标:知识目标:了解命题、真命题、假命题、定理的含义,会区分命题的题设和结论。能力目标:能区分命题的题设和结论;会把一些简单命题改写成“如果.那么的形式.情感目标:初步体会合理化思想.学习重点: 命题、定理的概念;区分命题的题设和结论。 学习难点:区分命题的题设和结论,会把一些简单命题改写“如果.那么.的形式.教学手段 引导探究教学准备 教案教学过程创设情境 复习导入教师出示以下问题:1.平行线的判定方法有哪些?2.平行线的性质有哪些.二尝试活动 探索新知了解命题和它的构成. 教师给出以下语句, 如果两条直线都与第三条直线平行,那么这条直线也互相
35、平行; 等式两边都加同一个数,结果仍是等式; 对顶角相等;如果两条直线不平行,那么同位角不相等.教师给出命题的定义. 判断一件事情的语句,叫做命题.命题的组成. 命题由题设和结论两局部组成.题设是事项,结论是由事项推出的事项. 命题的形成.真命题与假命题:教师出示问题:如果两个角相等,那么它们是对顶角。如果ab.bc那么a=b如果两个角互补,那么它们是邻补角。三尝试反应 理解新知 学生能积极的思考教师所出示的各个问题复习稳固有关的知识点为本节课的学习打下良好的根底。(注意:平行线的判定方法三种,另外还有平行公理的推论) 学生学生能由教师的引导分析每个语句的特点.思考:你能说一说这4个语句有什么
36、共同点吗?并能耐总结出这些语句都是对某一件事情作出“是或“不是的判断.初步感受到有些数学语言是对某件事作出判断的。判断语句“画ABCD有没有判断成分,是不是命题.学生并能举例说明是命题和不是命题的语句.与同组同学共同分析上述四个命题的题设和结论,重点分析第、语句. 第命题中,“存在一个等式而且“这等式两边加同一个数是题设, “结果仍是等式是结论。 第命题中,“两个角是对顶角是题设,“这两角相等是结论。学生能思考:你认为这几句话对吗?它们是不是命题?学生能由教师的讲解理解命题有真有假,并能通过举反例说明命题的错误。解答:1.是命题,题设是“等式两边乘同一个数,结论是“结果仍是等式. 2.第一个命题正确,第二个命题错误。可举出例子说明,如两条直线平行,同旁内角互补,但这两个同旁内角不是邻补角。对于学生所举的错误命题,教师应给归纳一下,有两类:第一类是命题题设缺乏于确定命题结正确,如“同位角相等,这里条件不够。学生能由教师的引导进行思考:通过本节课的学习,你有什么收获呢?你还有什么疑惑呢?总结本节课所学习的知识并能把本节课的知识形成知识网络。 明确命题有正确与错误之分:命题的正确性是我们经过推理证实的,这样得到的真命题叫做定理,作为真命题,定理也可以作为继续推理的依据。1.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 餐厨用具的清洁消毒方法
- 木材家具行业安全生产工作总结
- 英语教师年度个人工作总结1500字锦集三篇
- 培训班主任工作关注学生心理健康成长
- 地产行业安全工作总结
- 处理客户需求变更与合约更新
- 玩具管理系统课程设计
- 设计预算委托协议
- 电气类综合课程设计
- 幼儿节约粮食国旗下经典讲话稿范文(10篇)
- 国家开放大学《统计与数据分析基础》形考任务1-5答案
- 核反应堆热工分析课程设计
- (正式版)SH∕T 3548-2024 石油化工涂料防腐蚀工程施工及验收规范
- 2021-2022学年天津市河西区五年级上学期期末语文试卷
- JGJ107-2016钢筋机械连接技术规程培训宣贯
- 国际商务单证员考证总复习
- 道路、桥梁、隧道、地铁施工标准化手册(专业篇)
- 住宅小区室外道路及管网配套工程施工方案
- 风电分部工程验收签证表地基与基础008
- 申克转子秤安装图片指引ppt课件
- 山东昌乐二中“271高效课堂”教学模式
评论
0/150
提交评论