2022届北京市东城区普通校高考数学必刷试卷含解析_第1页
2022届北京市东城区普通校高考数学必刷试卷含解析_第2页
2022届北京市东城区普通校高考数学必刷试卷含解析_第3页
2022届北京市东城区普通校高考数学必刷试卷含解析_第4页
2022届北京市东城区普通校高考数学必刷试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1执行下面的程序框图,如果输入,则计算机输出的数是( )ABCD2已知集合,则( )ABCD3设函数是奇函数的导函数,当时,则使得成立的的取值范围是( )ABCD4洛书,古称龟书,是阴

2、阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( )ABCD5甲在微信群中发了一个6元“拼手气”红包,被乙丙丁三人抢完,若三人均领到整数元,且每人至少领到1元,则乙获得“最佳手气”(即乙领到的钱数多于其他任何人)的概率是( )ABCD6已知,则( )ABCD7函数的图象大致是( )ABCD8已知,如图是求的近似值的一个程序框图,则图中空白框中应填入ABCD9设为等差数列的前项和,若,则ABCD10执行如图所示的程序框图,

3、则输出的( )A2B3CD11为计算, 设计了如图所示的程序框图,则空白框中应填入( )ABCD12已知,则( )ABC3D4二、填空题:本题共4小题,每小题5分,共20分。13若满足,则目标函数的最大值为_.14数据的标准差为_15已知内角的对边分别为外接圆的面积为,则的面积为_.16设命题:,则:_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数有两个零点.(1)求的取值范围;(2)是否存在实数, 对于符合题意的任意,当 时均有?若存在,求出所有的值;若不存在,请说明理由18(12分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二

4、面角的余弦值19(12分)如图,在三棱柱中,是边长为2的等边三角形,.(1)证明:平面平面;(2),分别是,的中点,是线段上的动点,若二面角的平面角的大小为,试确定点的位置.20(12分)在四棱锥中,底面为直角梯形,分别为,的中点(1)求证:(2)若,求二面角的余弦值21(12分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.22(10分)山东省2020年高考将实施新的高考改

5、革方案.考生的高考总成绩将由3门统一高考科目成绩和自主选择的3门普通高中学业水平等级考试科目成绩组成,总分为750分.其中,统一高考科目为语文、数学、外语,自主选择的3门普通高中学业水平等级考试科目是从物理、化学、生物、历史、政治、地理6科中选择3门作为选考科目,语、数、外三科各占150分,选考科目成绩采用“赋分制”,即原始分数不直接用,而是按照学生分数在本科目考试的排名来划分等级并以此打分得到最后得分.根据高考综合改革方案,将每门等级考试科目中考生的原始成绩从高到低分为A、B+、B、C+、C、D+、D、E共8个等级。参照正态分布原则,确定各等级人数所占比例分别为3%、7%、16%、24%、2

6、4%、16%、7%、3%.等级考试科目成绩计入考生总成绩时,将A至E等级内的考生原始成绩,依照等比例转换法则,分别转换到91-100、81-90、71-80,61-70、51-60、41-50、31-40、21-30八个分数区间,得到考生的等级成绩.举例说明.某同学化学学科原始分为65分,该学科C+等级的原始分分布区间为5869,则该同学化学学科的原始成绩属C+等级.而C+等级的转换分区间为6170,那么该同学化学学科的转换分为:设该同学化学科的转换等级分为x,69-6565-58=70-xx-61,求得x66.73.四舍五入后该同学化学学科赋分成绩为67.(1)某校高一年级共2000人,为给

7、高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布N(60,122).(i)若小明同学在这次考试中物理原始分为84分,等级为B+,其所在原始分分布区间为8293,求小明转换后的物理成绩;(ii)求物理原始分在区间(72,84)的人数;(2)按高考改革方案,若从全省考生中随机抽取4人,记X表示这4人中等级成绩在区间61,80的人数,求X的分布列和数学期望.(附:若随机变量N(,2),则P-+=0.682,P-2+2=0.954,P-30,lnx0,f(x)0;当x(1,+)时,g(x)0,f(x)0,(x2-1)f(x)0,(x2-1)f(x)0,(x2-1)

8、f(x)0.综上所述,使得(x2-1)f(x)0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效4A【解析】基本事件总数,利用列举法求出其和等于11包含的基本事件有

9、4个,由此能求出其和等于11的概率【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数,其和等于11包含的基本事件有:,共4个,其和等于的概率故选:【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题5B【解析】将所有可能的情况全部枚举出来,再根据古典概型的方法求解即可.【详解】设乙,丙,丁分别领到x元,y元,z元,记为,则基本事件有,共10个,其中符合乙获得“最佳手气”的有3个,故所求概率为,故选:B.【点睛】本题主要考查了枚举法求古典概型的方法,属于基础题型.6D【解析】令,求,利用导数判断函数为单调递增,从而可得,设,利用导数证出为单调递减函数,

10、从而证出,即可得到答案.【详解】时,令,求导,故单调递增:,当,设, ,又,即,故.故选:D【点睛】本题考查了作差法比较大小,考查了构造函数法,利用导数判断式子的大小,属于中档题.7A【解析】根据复合函数的单调性,同增异减以及采用排除法,可得结果.【详解】当时,由在递增,所以在递增又是增函数,所以在递增,故排除B、C当时,若,则所以在递减,而是增函数所以在递减,所以A正确,D错误故选:A【点睛】本题考查具体函数的大致图象的判断,关键在于对复合函数单调性的理解,记住常用的结论:增+增=增,增-减=增,减+减=减,复合函数单调性同增异减,属中档题.8C【解析】由于中正项与负项交替出现,根据可排除选

11、项A、B;执行第一次循环:,若图中空白框中填入,则,若图中空白框中填入,则,此时不成立,;执行第二次循环:由均可得,若图中空白框中填入,则,若图中空白框中填入,则,此时不成立,;执行第三次循环:由可得,符合题意,由可得,不符合题意,所以图中空白框中应填入,故选C9C【解析】根据等差数列的性质可得,即,所以,故选C10B【解析】运行程序,依次进行循环,结合判断框,可得输出值.【详解】起始阶段有,第一次循环后,第二次循环后,第三次循环后,第四次循环后,所有后面的循环具有周期性,周期为3,当时,再次循环输出的,,此时,循环结束,输出,故选:B【点睛】本题主要考查程序框图的相关知识,经过几次循环找出规

12、律是关键,属于基础题型.11A【解析】根据程序框图输出的S的值即可得到空白框中应填入的内容【详解】由程序框图的运行,可得:S0,i0满足判断框内的条件,执行循环体,a1,S1,i1满足判断框内的条件,执行循环体,a2(2),S1+2(2),i2满足判断框内的条件,执行循环体,a3(2)2,S1+2(2)+3(2)2,i3观察规律可知:满足判断框内的条件,执行循环体,a99(2)99,S1+2(2)+3(2)2+1(2)99,i1,此时,应该不满足判断框内的条件,退出循环,输出S的值,所以判断框中的条件应是i1故选:A【点睛】本题考查了当型循环结构,当型循环是先判断后执行,满足条件执行循环,不满

13、足条件时算法结束,属于基础题12A【解析】根据复数相等的特征,求出和,再利用复数的模公式,即可得出结果.【详解】因为,所以,解得则.故选:A.【点睛】本题考查相等复数的特征和复数的模,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13-1【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】由约束条件作出可行域如图, 化目标函数为,由图可得,当直线过点时,直线在轴上的截距最大,由得即,则有最大值,故答案为【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求

14、”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14【解析】先计算平均数再求解方差与标准差即可.【详解】解:样本的平均数, 这组数据的方差是 标准差,故答案为:【点睛】本题主要考查了标准差的计算,属于基础题.15【解析】由外接圆面积,求出外接圆半径,然后由正弦定理可求得三角形的内角,从而有,于是可得三角形边长,可得面积【详解】设外接圆半径为,则,由正弦定理,得,故答案为:【点睛】本题考查正弦定理,利用正弦定理求出三角形的内角,然后可得边长,从而得

15、面积,掌握正弦定理是解题关键16,【解析】存在符号改任意符号,结论变相反.【详解】命题是特称命题,则为全称命题,故将“”改为“”,将“”改为“”,故:,.故答案为:,.【点睛】本题考查全(特)称命题. 对全(特)称命题进行否定的方法:(1)改写量词:全称量词改写为存在量词,存在量词改写为全称量词;(2)否定结论:对于一般命题的否定只需直接否定结论即可三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1);(2).【解析】(1)对求导,对参数进行分类讨论,根据函数单调性即可求得.(2)先根据,得,再根据零点解得,转化不等式得,令,化简得,因此 ,最后根据导数研究对应函数单调性

16、,确定对应函数最值,即得取值集合.【详解】(1),当时,对恒成立,与题意不符,当,时,即函数在单调递增,在单调递减,和时均有,解得:,综上可知:的取值范围;(2)由(1)可知,则,由的任意性及知,且,故,又,令,则,且恒成立,令,而,时,时,令,若,则时,即函数在单调递减,与不符;若,则时,即函数在单调递减,与式不符;若,解得,此时恒成立,即函数在单调递增,又,时,;时,符合式,综上,存在唯一实数符合题意.【点睛】利用导数研究不等式恒成立或存在型问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函

17、数的最值问题.18(1)证明见解析;(2)【解析】(1)取BC的中点O,则,由是等边三角形,得,从而得到平面,由此能证明(2)以,所在直线分别为x,y,z轴建立空间直角坐标系,利用向量法求得二面角的余弦值,得到结果.【详解】(1)取BC的中点O,连接,由于与是等边三角形,所以有,且,所以平面,平面,所以(2)设,是全等的等边三角形,所以,又,由余弦定理可得,在中,有,所以以,所在直线分别为x,y,z轴建立空间直角坐标系,如图所示,则,设平面的一个法向量为,则,令,则,又平面的一个法向量为,所以二面角的余弦值为,即二面角的余弦值为【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利用线面垂

18、直证明线性垂直,利用向量法求二面角的余弦值,属于中档题目.19(1)证明见解析;(2)为线段上靠近点的四等分点,且坐标为【解析】(1)先通过线面垂直的判定定理证明平面,再根据面面垂直的判定定理即可证明;(2)分析位置关系并建立空间直角坐标系,根据二面角的余弦值与平面法向量夹角的余弦值之间的关系,即可计算出的坐标从而位置可确定.【详解】(1)证明:因为,所以,即.又因为,所以,所以平面.因为平面,所以平面平面.(2)解:连接,因为,是的中点,所以.由(1)知,平面平面,所以平面.以为原点建立如图所示的空间直角坐标系,则平面的一个法向量是,.设,代入上式得,所以.设平面的一个法向量为,由,得.令,

19、得.因为二面角的平面角的大小为,所以,即,解得.所以点为线段上靠近点的四等分点,且坐标为.【点睛】本题考查面面垂直的证明以及利用向量法求解二面角有关的问题,难度一般.(1)证明面面垂直,可通过先证明线面垂直,再证明面面垂直;(2)二面角的余弦值不一定等于平面法向量夹角的余弦值,要注意结合图形分析.20(1)见解析(2)【解析】(1)由已知可证明平面,从而得证面面垂直,再由,得线面垂直,从而得,由直角三角形得结论;(2)以为轴建立空间直角坐标系,用空间向量法示二面角【详解】(1)证明:连接,平面平面,平面平面,为的中点,平面平面,平面平面,为斜边的中点,(2),由(1)可知,为等腰直角三角形,则

20、以为坐标原点建立如图所示的空间直角坐标系,则,则,记平面的法向量为由得到,取,可得,则易知平面的法向量为记二面角的平面角为,且由图可知为锐角,则,所以二面角的余弦值为【点睛】本题考查用面面垂直的性质定理证明线面垂直,从而得线线垂直,考查用空间向量法求二面角在立体几何中求异面直线成的角、直线与平面所成的角、二面角等空间角时,可以建立空间直角坐标系,用空间向量法求解空间角,可避免空间角的作证过程,通过计算求解21(1),;(2).【解析】(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以得,进而可化简得出曲线的直角坐标方程;(2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函数的有界性可得出结果.【详解】(1)由(为参数),得,化简得,故直线的普通方程为.由,得,又,.所以的直角坐标方程为;(2)由(1)得曲线的直角坐标方程为,向下平移个单位得到,纵坐标不变,横坐标变为原来的倍得到曲线的方程为,所以曲线的参数方程为(为参数).故点到直线的距离为,当时,最小为.【点睛】本题考查曲线的参数方程、极坐标方程与普通方程的相互转化,同时也考查了利用椭圆的参数方程解决点到直线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论