版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高二数学学习:高二数学知识点排列组合公式你还在为高中数学学习而苦恼吗?别担忧,看了高二数学学习:高二数学知识点排列组合公式以后你会有很大的收获:高二数学学习:高二数学知识点排列组合公式排列组合公式/排列组合计算公式排列P-和顺序有关组合C-不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法.排列把5本书分给3个人,有几种分法组合1排列及计算公式从n个不同元素中,任取mmn个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出mmn个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号pn,m表示.pn,m=n
2、n-1n-2n-m+1=n!/n-m!规定0!=1.2组合及计算公式从n个不同元素中,任取mmn个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出mmn个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号cn,m表示.cn,m=pn,m/m!=n!/n-m!*m!;cn,m=cn,n-m;3其他排列与组合公式从n个元素中取出r个元素的循环排列数pn,r/r=n!/rn-r!.n个元素被分成k类,每类的个数分别是n1,n2,.nk这n个元素的全排列数为n!/n1!*n2!*.*nk!.k类元素,每类的个数无限,从中取出m个元素的组合数为cm+k-
3、1,m.排列Pnmn为下标,m为上标Pnm=nn-1.n-m+1;Pnm=n!/n-m!注:!是阶乘符号;Pnn两个n分别为上标和下标=n!;0!=1;Pn1n为下标1为上标=n组合Cnmn为下标,m为上标Cnm=Pnm/Pmm;Cnm=n!/m!n-m!;Cnn两个n分别为上标和下标=1;Cn1n为下标1为上标=n;Cnm=Cnn-m2019-07-0813:30公式P是指排列,从N个元素取R个进展排列。公式C是指组合,从N个元素取R个,不进展排列。N-元素的总个数R参与选择的元素个数!-阶乘,如9!9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*n-1*n-2.n-r+1;
4、因为从n到n-r+1个数为nn-r+1r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1:123和213是两个不同的排列数。即对排列顺序有要求的,既属于排列P计算范畴。上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数那么应该有9-1种可能,个位数那么应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式P3,99*8*7,从9倒数3个的乘积Q2:有从1到9共计9个号码球,请问,假如三个一组,代表三国联盟,可以组合成多少个三国联盟?A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可
5、。即不要求顺序的,属于组合C计算范畴。上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C3,9=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组1每名学生都只参加一个课外小组;2每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加各有多少种不同方法?解1由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法2由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进展计算例2排成一行,其中不排第一,不排第二
6、,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、中的某一个,共3类,每一类中不同排法可采用画树图的方式逐一排出:符合题意的不同排法共有9种点评按照分类的思路,此题应用了加法原理为把握不同排法的规律,树图是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型例判断以下问题是排列问题还是组合问题?并计算出结果1高三年级学生会有11人:每两人互通一封信,共通了多少封信?每两人互握了一次手,共握了多少次手?2高二年级数学课外小组共10人:从中选一名正组长和一名副组长,共有多少种不同的选法?从中选2名参加省数学竞赛,有多少种不同的选法?3有2,3,5,7,11,1
7、3,17,19八个质数:从中任取两个数求它们的商可以有多少种不同的商?从中任取两个求它的积,可以得到多少个不同的积?4有8盆花:从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?从中选出2盆放在教室有多少种不同的选法?分析1由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题其他类似分析1是排列问题,共用了封信;是组合问题,共需握手次2是排列问题,共有种不同的选法;是组合问题,共有种不同的选法3是排列问题,共有种不同的商;是组合问题,共有种不同的积4是排列问题,共有种不同的选法
8、;是组合问题,共有种不同的选法例证明证明左式右式等式成立点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化例5化简解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化例6解方程:1;2解1原方程解得2原方程可变为原方程可化为即,解得宋以后,京师所设小学馆和武学堂中的老师称谓皆称之为“教谕。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习。到清末,学堂兴起,各科老师仍沿用“教习一称。其实“教谕在明清时还有学官一意,即主管县一级的教育生员。而相应府和州掌管教育生员者那么谓
9、“教授和“学正。“教授“学正和“教谕的副手一律称“训导。于民间,特别是汉代以后,对于在“校或“学中传授经学者也称为“经师。在一些特定的讲学场合,比方书院、皇室,也称老师为“院长、西席、讲席等。要练说,得练听。听是说的前提,听得准确,才有条件正确模拟,才能不断地掌握高一级程度的语言。我在教学中,注意听说结合,训练幼儿听的才能,课堂上,我特别重视老师的语言,我对幼儿说话,注意声音清楚,上下起伏,抑扬有致,富有吸引力,这样能引起幼儿的注意。当我发现有的幼儿不专心听别人发言时,就随时表扬那些静听的幼儿,或是让他重复别人说过的内容,抓住教育时机,要求他们专心听,用心记。平时我还通过各种兴趣活动,培养幼儿边听边记,边听边想,边听边说的才能,如听词对词,听词句说意思,听句子辩正误,听故事讲述故事,听谜语猜谜底,听智力故事,动脑筋,出主意,听儿歌上句,接儿歌下句等,这样幼儿学得生动活泼,轻松愉快,既训练了听的才能,强化了记忆,又开展了思维,为说打下了根底。通过阅读高二数学学习:高二数学知识点排列组合公式这篇文章,小编相信大家对高中数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025出租车司机聘用合同2
- 2025年度文化创意产品订货合同模板2篇
- 二零二五年度农业种植与农业保险合作合同3篇
- 2025木材买卖的合同范本
- 二零二五年度出差文化与价值观融入协议3篇
- 二零二五年度智能厂房安全责任协议2篇
- 二零二五年度金融许可证转让合同3篇
- 2025年度农村房屋租赁权转让与装修改造服务合同
- 二零二五年度绿色建筑项目投资合作协议3篇
- 2025年度公司对赌协议合同-绿色金融与可持续发展3篇
- 三甲医院评审护理院感组专家现场访谈问题梳理(护士)
- 质量工程师中级教材
- 劳务派遣协议书(吉林省人力资源和社会保障厅制)
- 水库移民安置档案分类大纲与编号方案
- 医院安全生产风险分级管控和隐患排查治理双体系
- GA 1802.2-2022生物安全领域反恐怖防范要求第2部分:病原微生物菌(毒)种保藏中心
- 企业EHS风险管理基础智慧树知到答案章节测试2023年华东理工大学
- 健身俱乐部入场须知
- 《古兰》中文译文版
- 井下机电安装安全教育培训试题及答案
- TZJXDC 002-2022 电动摩托车和电动轻便摩托车用阀控式铅酸蓄电池
评论
0/150
提交评论