Eviews11章VAR模型和VEC模型ppt课件_第1页
Eviews11章VAR模型和VEC模型ppt课件_第2页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第11章 VAR模型和VEC模型 重点内容: 向量自回归实际 VAR模型的建立 Johansen协整检验 VEC模型的建立.一、向量自回归VAR模型1.向量自回归实际向量自回归模型可以用来预测相关联的经济时间序列系统,并分析随机扰动对变量系统的动态冲击,进一步解释经济冲击对经济变量所产生的影响。滞后阶数为p的VAR模型表达式为yt=A1 yt-1 +A2 yt-2 + Ap yt-p+B xt + t 其中,yt为k维内生变量向量;xt为d维外生变量向量;t是k维误差向量A1,A2,Ap,B是待估系数矩阵。.一、向量自回归VAR模型1.向量自回归实际滞后阶数为p的VAR模型表达式还可以表述为即

2、上式称为非限制性向量自回归Unrestricted VAR模型,是滞后算子L的k k 的参数矩阵。当行列式detA(L)的根都在单位圆外时,不含外生变量的非限制性向量自回归模型才满足平稳性条件。 .一、向量自回归VAR模型2.构造VAR模型SVAR构造VAR是指在模型中参与了内生变量的当期值,即解释变量中含有当期变量,这是与VAR模型的不同之处。下面以两变量SVAR模型为例进展阐明。xt=b10 + b12zt +11xt-1 +12 zt-1 + xt zt=b20 + b21xt +21xt-1 +22 zt-1 + zt 这是滞后阶数p=1的SVAR模型。其中,xt和zt均是平稳随机过程

3、;随机误差项xt和zt是白噪声序列,并且它们之间不相关。系数b12表示变量的zt的变化对变量xt的影响;21表示xt-1的变化对zt的滞后影响。该模型同样可以用如下向量方式表达,即B0 yt= 0 + 1 yt-1 + t .一、向量自回归VAR模型3. VAR模型的建立选择“Quick|“Estimate VAR选项,将会弹出以下图所示的对话框。该对话框包括三个选项卡,分别是“Basics、“Cointegration和“VEC Restrictions,后两个选项卡在VEC模型操作中运用。系统默许是“Basics选项卡。 .一、向量自回归VAR模型3. VAR模型的建立在“VAR Type

4、中有两个选项:“Unrestricted VAR建立的是无约束的向量自回归模型,即 VAR模型的简化式;“Vector Error Correction建立的是误差修正模型。“Estimation Sample的编辑框中输入的是样本区间,当任务文件建立好后,系统会自动给出样本区间。“Endogenous Variables中输入的是内生变量。“Exogenous Variables中输入的是外生变量,系统默许情况下将常数项c作为外生变量。“Lag Intervals for Endogenous中指定滞后区间 .一、向量自回归VAR模型4. VAR模型的检验VAR模型的滞后构造检验 1AR根的

5、图与表假设VAR模型一切根模的倒数都小于1,即都在单位圆内,那么该模型是稳定的;假设VAR模型一切根模的倒数都大于1,即都在单位圆外,那么该模型是不稳定的。假设被估计的VAR模型不稳定,那么得到的结果有些是无效的。在VAR对象的工具栏中选择“View|“Lag Structure|“AR Roots Table/ AR Roots Graph选项,得到AR根的表和图。.一、向量自回归VAR模型4. VAR模型的检验VAR模型中AR根的图 VAR模型的滞后构造检验 1AR根的图与表.一、向量自回归VAR模型3. VAR模型的建立VAR模型的滞后构造检验 2Granger因果检验Granger因果

6、检验的原假设是 H0:变量x不能Granger引起变量y备择假设是H1:变量x能Granger引起变量y在EViews软件操作中,选择VAR对象工具栏中的“View|“Lag Structure|“Granger Causality/Block Exogeneity Tests选项,可得到检验结果 。.一、向量自回归VAR模型3. VAR模型的建立VAR模型的滞后构造检验 2Granger因果检验右图的检验结果为:在5%的显著性程度下,变量log(ex)能Granger引起变量log(ms),即回绝原假设;但变量log(ms)不能Granger引起变量log(ex),即接受原假设。 .一、向量

7、自回归VAR模型3. VAR模型的建立VAR模型的滞后构造检验 3滞后排除检验滞后排除检验Lag Exclusion Tests是对VAR模型中的每一阶数的滞后进展排除检验。如右图所示。第一列是滞后阶数,第二列和第三列是方程的2统计量,最后一列是结合的2统计量。.一、向量自回归VAR模型3. VAR模型的建立VAR模型的滞后构造检验 4滞后阶数规范 选择VAR对象工具栏中的“View|“Lag Structure|“Lag Length Criteria选项,在弹出的对话框中输入最大滞后阶数,然后单击“OK按钮即可得到检验结果。.二、脉冲呼应函数脉冲呼应函数IRF,Impulse Respon

8、se Function分析方法可以用来描画一个内生变量对由误差项所带来的冲击的反响,即在随机误差项上施加一个规范差大小的冲击后,对内生变量的当期值和未来值所产生的影响程度。在EViews软件操作中,选择VAR对象工具栏中的“View|“Impulse Response选项,或者直接点击VAR对象工具栏中的“Impulse功能键即可得到脉冲呼应函数的设定对话框。.二、脉冲呼应函数在脉冲呼应函数的设定对话框中有两个选项卡:一个是“Display,一个是“Impulse Definition。系统默许下翻开的是“Display选项卡。其中,“Display Format包含三种显示方式,“Table

9、表格方式,“Multiple Graphs多个图方式,“Combined Graphs组合图方式。系统默许下是“Multiple Graphs选项。.二、脉冲呼应函数“Display Information中输入冲击变量Impulses和脉冲呼应变量Responses。这里可以输入内生变量的称号,也可以输入变量的序号。 在“Periods中输入显示的最长时期。“Accumlated Responses为累积呼应。对于稳定的VAR模型,脉冲呼应函数应趋于0,累积呼应趋于非0常数。.三、方差分解根本思想:方差分解的根本思想是,把系统中的全部内生变量k个的动摇按其成因分解为与各个方程新息相关联的k个

10、组成部分,从而得到新息对模型内生变量的相对重要程度。在EViews软件操作中,选择VAR对象工具栏中的“View|“Variance Decomposition选项,弹出对话框。其部分内容设定与脉冲呼应函数一样。当改动VAR模型中的变量顺序时,基于Cholesky因子的方差分解会有改动。.四、Johansen协整检验1、Johansen协整实际在VAR(p)模型中,设变量y1t, y2t,ykt均是非平稳的一阶单整序列,即ytI(1)。xt是d维外生向量,代表趋势项、常数项等,yt=A1 yt-1 +A2 yt-2 + Ap yt-p+B xt + t 变量y1t, y2t,ykt的一阶单整过

11、程I(1)经过差分后变为零阶单整过程I(0) .四、Johansen协整检验1、Johansen协整实际设变量y1t, y2t,ykt均是非平稳的一阶单整序列,即ytI(1)。xt是d维外生向量,代表趋势项、常数项等,yt=A1 yt-1 +A2 yt-2 + Ap yt-p+B xt + t 变量y1t, y2t,ykt的一阶单整过程I(1)经过差分后变为零阶单整过程I(0) .四、Johansen协整检验1、Johansen协整实际其中,yt和yt-jj=1,2,p都是由I(0)变量构成的向量,假设 yt-1是I(0)的向量,即y1t-1,y2t-1,ykt-1之间具有协整关系,那么yt是

12、平稳的。.四、Johansen协整检验1、Johansen协整实际根据协整方程中能否包含截距项和趋势项,将其分为五类:第一类,序列yt没有确定趋势,协整方程没有截距项;第二类,序列yt没有确定趋势,协整方程有截距项;第三类,序列yt有确定的线性趋势,协整方程只需截距项;第四类,序列yt有确定的线性趋势,协整方程有确定的线性趋势;第五类,序列yt有二次趋势,协整方程只需线性趋势。.四、Johansen协整检验2、Johansen协整检验1特征根迹Trace检验 2最大特征值检验.四、Johansen协整检验2、Johansen协整检验1特征根迹Trace检验 原假设为 Hr0:r0,r+1=0备

13、择假设为 H r1:r+10, r=1,2,k-1检验统计量为 其中, r是特征根迹统计量。.四、Johansen协整检验2、Johansen协整检验1特征根迹Trace检验 当 0 临界值时,接受H10,至少有一个协整向量;当 1 临界值时,回绝H10,至少有两个协整向量;当 r0, 检验统计量为 r = - nln(1-r+1) 其中, r是最大特征根统计量。当 0 临界值时,回绝H00,至少有一个协整向量;当 1 临界值时,回绝H10,至少有两个协整向量;当 r 临界值时,接受Hr0,只需r个协整向量。.四、 Johansen协整检验EViews操作在EViews软件操作中,选择VAR0

14、1对象工具栏中的“View|“Cointegration Test选项,翻开以下图所示的协整检验设定对话框。.四、 Johansen协整检验EViews操作在“Deterministic trend assumption of test中确定协整方程的类型 。在“Exog variables中输入外生变量xt。假设没有外生变量,此编辑框可为空。 在“Lag intervals中设定滞后区间,这里的数字要起止点成对输入,如“1 2。最右侧的数值为VAR模型滞后阶数p-1,即协整检验的滞后阶数等于VAR模型滞后阶数减去1 。在“Critical Values中可设定检验的显著性程度。系统默许下是0

15、.05。用户可以根据实践检验需求设定为0.01或0.10。 .五、 向量误差修正VEC模型1、VEC模型实际根据协整方程可得到如下表达式这样得到的每一个方程都是误差修正模型, ecmt-1= yt-1是误差修正项,可以反响变量之间的长期平衡关系。 .五、 向量误差修正VEC模型1、VEC模型实际系数向量可以反映变量间的平衡关系偏离长期平衡形状时,将其调整到平衡形状的调整力度。误差修正模型等式右侧的变量差分项的系数反映了各变量的短期动摇对被解释变量的短期变化的影响。在回归模型中,统计量不显著的滞后差分项可以直接剔除。 .五、 向量误差修正VEC模型2、VEC模型估计由于VEC模型是含有协整约束变

16、量构建的模型,所以在估计VEC模型前需进展Johansen协整检验,并要确定协整关系的数量。假设变量间没有协整关系,那么不能构建VEC模型。.五、 向量误差修正VEC模型2、VEC模型估计选择主菜单栏中的“Quick|“Estimate VAR选项,在VAR模型对话框中选择“Vector Error Correction选项。“Basics选项卡内容的设定与VAR模型一样。不同的是滞后区间的设定,VEC模型中的滞后间隔阐明的是一阶差分后的滞后。 .五、 向量误差修正VEC模型2、VEC模型估计在“Cointegration选项卡中,有两项内容需求设定。如下图。在“Number of cointegrating指定协整关系个数,普通这个数要小于VEC模型中内生变量的个数。在JJ协整检验中可以确定变量的协整关系

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论