2021-2022学年上海市上南高三二诊模拟考试数学试卷含解析_第1页
2021-2022学年上海市上南高三二诊模拟考试数学试卷含解析_第2页
2021-2022学年上海市上南高三二诊模拟考试数学试卷含解析_第3页
2021-2022学年上海市上南高三二诊模拟考试数学试卷含解析_第4页
2021-2022学年上海市上南高三二诊模拟考试数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1双曲线x26-y23=1的渐近线与圆(x3)2y2r2(r0)相切,则r等于()A3B2C3D62设函数(,)是上的奇函数,若的图象关于直线对称,且在区间上是单调函数,则( )ABCD3若复数满足,则( )ABC2D4已知,满足,且的最大值是

2、最小值的4倍,则的值是( )A4BCD5设i为虚数单位,若复数,则复数z等于( )ABCD06设集合,若集合中有且仅有2个元素,则实数的取值范围为ABCD7如图所示,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F且EF=,则下列结论中错误的是( )AACBEBEF平面ABCDC三棱锥A-BEF的体积为定值D异面直线AE,BF所成的角为定值8已知复数满足,则=( )ABCD9已知函数的图像的一条对称轴为直线,且,则的最小值为( )AB0CD10若双曲线:()的一个焦点为,过点的直线与双曲线交于、两点,且的中点为,则的方程为( )ABCD11已知一个三棱锥的三视图如图所

3、示,其中三视图的长、宽、高分别为,且,则此三棱锥外接球表面积的最小值为( )ABCD12若复数(是虚数单位),则复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点,则的值是 14在数列中,则数列的通项公式_.15已知点P是直线y=x+1上的动点,点Q是抛物线y=x2上的动点.设点M为线段PQ的中点,O为原点,则|OM|的最小值为_.16如图,在平行四边形中,,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,其中,为自然

4、对数的底数.(1)当时,证明:对;(2)若函数在上存在极值,求实数的取值范围。18(12分)已知,点分别为椭圆的左、右顶点,直线交于另一点为等腰直角三角形,且.()求椭圆的方程;()设过点的直线与椭圆交于两点,总使得为锐角,求直线斜率的取值范围.19(12分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.20(12分)在平面直角坐标系中,曲线(为参数),以坐标原点为极点,轴的正半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的普通方程;(2)若P,Q分别为曲线,上的动点,求的最大值.21(12分

5、)在直角坐标系中,已知曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,射线的极坐标方程为,射线的极坐标方程为.()写出曲线的极坐标方程,并指出是何种曲线;()若射线与曲线交于两点,射线与曲线交于两点,求面积的取值范围.22(10分)曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程和曲线的直角坐标方程;(2)过原点且倾斜角为的射线与曲线分别交于两点(异于原点),求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】由圆

6、心到渐近线的距离等于半径列方程求解即可.【详解】双曲线的渐近线方程为y22x,圆心坐标为(3,0)由题意知,圆心到渐近线的距离等于圆的半径r,即r223-0222+1=3.答案:A【点睛】本题考查了双曲线的渐近线方程及直线与圆的位置关系,属于基础题.2D【解析】根据函数为上的奇函数可得,由函数的对称轴及单调性即可确定的值,进而确定函数的解析式,即可求得的值.【详解】函数(,)是上的奇函数,则,所以.又的图象关于直线对称可得,即,由函数的单调区间知,即,综上,则,.故选:D【点睛】本题考查了三角函数的图象与性质的综合应用,由对称轴、奇偶性及单调性确定参数,属于中档题.3D【解析】把已知等式变形,

7、利用复数代数形式的乘除运算化简,再由复数模的计算公式计算.【详解】解:由题意知,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法.4D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.5B【解析】根据复数除法的运算法则,即可求解.【详解】.故选:B.【点睛】本题考查复数的代数运算,属于基础题.6B【解析】由题意知且,结合数轴即可求得的取值范围.【详解】由题意知,则,故,又,则,所以,所以本题答案为B.【点睛】本题主要考查了集合的关系及运算,以

8、及借助数轴解决有关问题,其中确定中的元素是解题的关键,属于基础题.7D【解析】A通过线面的垂直关系可证真假;B根据线面平行可证真假;C根据三棱锥的体积计算的公式可证真假;D根据列举特殊情况可证真假.【详解】A因为,所以平面,又因为平面,所以,故正确;B因为,所以,且平面,平面,所以平面,故正确;C因为为定值,到平面的距离为,所以为定值,故正确;D当,取为,如下图所示:因为,所以异面直线所成角为,且,当,取为,如下图所示:因为,所以四边形是平行四边形,所以,所以异面直线所成角为,且,由此可知:异面直线所成角不是定值,故错误.故选:D.【点睛】本题考查立体几何中的综合应用,涉及到线面垂直与线面平行

9、的证明、异面直线所成角以及三棱锥体积的计算,难度较难.注意求解异面直线所成角时,将直线平移至同一平面内.8B【解析】利用复数的代数运算法则化简即可得到结论.【详解】由,得,所以,.故选:B.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题.9D【解析】运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,所以,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中

10、利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.10D【解析】求出直线的斜率和方程,代入双曲线的方程,运用韦达定理和中点坐标公式,结合焦点的坐标,可得的方程组,求得的值,即可得到答案.【详解】由题意,直线的斜率为,可得直线的方程为,把直线的方程代入双曲线,可得,设,则,由的中点为,可得,解答,又由,即,解得,所以双曲线的标准方程为.故选:D.【点睛】本题主要考查了双曲线的标准方程的求解,其中解答中属于运用双曲线的焦点和联立方程组,合理利用根与系数的关系和中点坐标公式是解答的关键,着重考查了推理与运算能力.1

11、1B【解析】根据三视图得到几何体为一三棱锥,并以该三棱锥构造长方体,于是得到三棱锥的外接球即为长方体的外接球,进而得到外接球的半径,求得外接球的面积后可求出最小值【详解】由已知条件及三视图得,此三棱锥的四个顶点位于长方体的四个顶点,即为三棱锥,且长方体的长、宽、高分别为,此三棱锥的外接球即为长方体的外接球,且球半径为,三棱锥外接球表面积为,当且仅当,时,三棱锥外接球的表面积取得最小值为故选B【点睛】(1)解决关于外接球的问题的关键是抓住外接的特点,即球心到多面体的顶点的距离都等于球的半径,同时要作一圆面起衬托作用(2)长方体的外接球的直径即为长方体的体对角线,对于一些比较特殊的三棱锥,在研究其

12、外接球的问题时可考虑通过构造长方体,通过长方体的外球球来研究三棱锥的外接球的问题12A【解析】将 整理成的形式,得到复数所对应的的点,从而可选出所在象限.【详解】解:,所以所对应的点为在第一象限.故选:A.【点睛】本题考查了复数的乘法运算,考查了复数对应的坐标.易错点是误把 当成进行计算.二、填空题:本题共4小题,每小题5分,共20分。13【解析】试题分析:由三角函数定义知,又由诱导公式知,所以答案应填:考点:1、三角函数定义;2、诱导公式14【解析】由题意可得,又,数列的奇数项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【详解】解:,得:,又,数

13、列的奇数项为首项为1,公差为2的等差数列,当为奇数时,当为偶数时,则为奇数,数列的通项公式,故答案为:.【点睛】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式153216【解析】过点Q作直线平行于y=x+1,则M在两条平行线的中间直线上,当直线相切时距离最小,计算得到答案.【详解】如图所示:过点Q作直线平行于y=x+1,则M在两条平行线的中间直线上,y=x2,则y=2x=1,x=12,故抛物线的与直线平行的切线为y=x-14.点M为线段PQ的中点,故M在直线y=x+38时距离最小,故d=382=

14、3216.故答案为:3216.【点睛】本题考查了抛物线中距离的最值问题,转化为切线问题是解题的关键.16【解析】根据ABCD是平行四边形可得出,然后代入AB2,AD1即可求出的值【详解】AB2,AD1, 141故答案为:1【点睛】本题考查了向量加法的平行四边形法则,相等向量和相反向量的定义,向量数量积的运算,考查了计算能力,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1)见证明;(2) 【解析】(1)利用导数说明函数的单调性,进而求得函数的最小值,得到要证明的结论;(2)问题转化为导函数在区间上有解,法一:对a分类讨论,分别研究a的不同取值下,导函数的单调性

15、及值域,从而得到结论.法二:构造函数,利用函数的导数判断函数的单调性求得函数的值域,再利用零点存在定理说明函数存在极值【详解】(1)当时,于是,.又因为,当时,且.故当时,即. 所以,函数为上的增函数,于是,.因此,对,;(2) 方法一:由题意在上存在极值,则在上存在零点,当时,为上的增函数,注意到,所以,存在唯一实数,使得成立. 于是,当时,为上的减函数;当时,为上的增函数;所以为函数的极小值点; 当时,在上成立,所以在上单调递增,所以在上没有极值;当时,在上成立,所以在上单调递减,所以在上没有极值, 综上所述,使在上存在极值的的取值范围是.方法二:由题意,函数在上存在极值,则在上存在零点.

16、即在上存在零点. 设,则由单调性的性质可得为上的减函数.即的值域为,所以,当实数时,在上存在零点.下面证明,当时,函数在上存在极值.事实上,当时,为上的增函数,注意到,所以,存在唯一实数,使得成立.于是,当时,为上的减函数;当时,为上的增函数;即为函数的极小值点.综上所述,当时,函数在上存在极值.【点睛】本题考查利用导数研究函数的最值,涉及函数的单调性,导数的应用,函数的最值的求法,考查构造法的应用,是一道综合题18();().【解析】()由题意可知:由,求得点坐标,即可求得椭圆的方程;()设直线,代入椭圆方程,由韦达定理,由,由为锐角,则,由向量数量积的坐标公式,即可求得直线斜率的取值范围【

17、详解】解:()根据题意是等腰直角三角形,设由得则代入椭圆方程得椭圆的方程为()根据题意,直线的斜率存在,可设方程为设由得由直线与椭圆有两个不同的交点则即得又为锐角则即 由得或故直线斜率可取值范围是【点睛】本题考查椭圆的标准方程及简单几何性质,考查直线与椭圆的位置关系,考查向量数量积的坐标运算,韦达定理,考查计算能力,属于中档题19(1)见解析;(2).【解析】(1)分两种情况讨论:两切线、中有一条切线斜率不存在时,求出两切线的方程,验证结论成立;两切线、的斜率都存在,可设切线的方程为,将该直线的方程与椭圆的方程联立,由可得出关于的二次方程,利用韦达定理得出两切线的斜率之积为,进而可得出结论;(

18、2)求出点、的坐标,利用两点间的距离公式结合韦达定理得出,换元,可得出,利用二次函数的基本性质可求得的取值范围.【详解】(1)由于点在半圆上,则.当两切线、中有一条切线斜率不存在时,可求得两切线方程为,或,此时;当两切线、的斜率都存在时,设切线的方程为(、的斜率分别为、),.综上所述,;(2)根据题意得、,令,则,所以,当时,当时,.因此,的取值范围是.【点睛】本题考查椭圆两切线垂直的证明,同时也考查了弦长的取值范围的计算,考查计算能力,属于中等题.20(1),;(2)【解析】试题分析:(1)由消去参数,可得的普通方程,由可得的普通方程;(2)设为曲线上一点,点到曲线的圆心的距离,结合可得最值,的最大值为,从而得解.试题解析:(1)的普通方程为.曲线的极坐标方程为,曲线的普通方程为,即.(2)设为曲线上一点,则点到曲线的圆心的距离 .,当时,d有最大值.又P,Q分别为曲线,曲线上动点,的最大值为.21(),曲线是以为圆心,为半径的圆;().【解析】()由曲线的参数方程能求出曲线的普通方程,由此能求出曲线的极坐标方程()令,则,利用诱导公式及二倍角公式化简,再由余弦函数的性质求出面积的取值范围;【详解】解:()由(为参数)化为普通方程为,整理得曲线是以为圆心,为半径的圆.()令,面积的取值范围为【点睛】本题考查曲线的极坐标方程的求法,考查三角形的面积的求法,考查参数方程、直角坐标方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论