版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列函数中,值域为的偶函数是( )ABCD2已知定义在上的函数满足,且在上是增函数,不等式对于恒成立,则的取值范围是ABCD3双曲线的渐近线方程是( )ABCD4盒子中有编号为1,2
2、,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( )ABCD5设且,则下列不等式成立的是( )ABCD6复数(为虚数单位),则等于( )A3BC2D7已知正四面体的内切球体积为v,外接球的体积为V,则( )A4B8C9D278已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是( )AB9C7D9在中,点,分别在线段,上,且,则( )ABC4D910已知是定义在上的奇函数,且当时,若,则的解集是( )ABCD11的展开式中的系数是-10,则实数( )A2B1C-1D-212已知双曲线的左右焦点分别为,以线段为直径的圆与双
3、曲线在第二象限的交点为,若直线与圆相切,则双曲线的渐近线方程是( )A BC D二、填空题:本题共4小题,每小题5分,共20分。13若函数为偶函数,则_.14的展开式中,项的系数是_15若,则_,_.16从一箱产品中随机地抽取一件,设事件抽到一等品,事件抽到二等品,事件抽到三等品,且已知, ,则事件“抽到的产品不是一等品”的概率为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,且满足(1)求点的轨迹的方程;(2)过,作直线交轨迹于,两点,若的面积是面积的2倍,求直线的方程18(12分)某公司欲投资一新型产品的批量生产,预计该产品的每日生产总成本
4、价格)(单位:万元)是每日产量(单位:吨)的函数:.(1)求当日产量为吨时的边际成本(即生产过程中一段时间的总成本对该段时间产量的导数);(2)记每日生产平均成本求证:;(3)若财团每日注入资金可按数列(单位:亿元)递减,连续注入天,求证:这天的总投入资金大于亿元.19(12分)在中,角所对的边分别为,的面积.(1)求角C;(2)求周长的取值范围.20(12分)已知等比数列是递增数列,且(1)求数列的通项公式;(2)若,求数列的前项和21(12分)在平面直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)求曲线C的极坐
5、标方程和直线l的直角坐标方程;(2)若射线与曲线C交于点A(不同于极点O),与直线l交于点B,求的最大值.22(10分)已知函数.()求的值;()若,且,求的值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C考点:1、函数的奇偶性;2、函数的值域2A【解析】根据奇偶性定义和性质可判断出函数为偶函数且在上是减函数,由此可将不等式化为;利用分离变量法可得,求得的最大值和的最
6、小值即可得到结果.【详解】 为定义在上的偶函数,图象关于轴对称又在上是增函数 在上是减函数 ,即对于恒成立 在上恒成立,即的取值范围为:本题正确选项:【点睛】本题考查利用函数的奇偶性和单调性求解函数不等式的问题,涉及到恒成立问题的求解;解题关键是能够利用函数单调性将函数值的大小关系转化为自变量的大小关系,从而利用分离变量法来处理恒成立问题.3C【解析】根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用4B【解析】由题意,取的3个球的编号的中位数
7、恰好为5的情况有,所有的情况有种,由古典概型的概率公式即得解.【详解】由题意,取的3个球的编号的中位数恰好为5的情况有,所有的情况有种由古典概型,取的3个球的编号的中位数恰好为5的概率为:故选:B【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题.5A【解析】 项,由得到,则,故项正确;项,当时,该不等式不成立,故项错误;项,当,时,即不等式不成立,故项错误;项,当,时,即不等式不成立,故项错误综上所述,故选6D【解析】利用复数代数形式的乘除运算化简,从而求得,然后直接利用复数模的公式求解.【详解】,所以,故选:D.【点睛】该题考查的是有关复
8、数的问题,涉及到的知识点有复数的乘除运算,复数的共轭复数,复数的模,属于基础题目.7D【解析】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,首先求出正四面体的体积,再利用等体法求出内切球的半径,在中,根据勾股定理求出外接球的半径,利用球的体积公式即可求解.【详解】设正四面体的棱长为,取的中点为,连接,作正四面体的高为,则,设内切球的半径为,内切球的球心为,则,解得:;设外接球的半径为,外接球的球心为,则或,在中,由勾股定理得:,解得, 故选:D【点睛】本题主要考查了多面体的内切球、外接球问题,考查了椎体的体积公式以及球的体积公式,需熟记几何体的体积公式,属于基础题.8B【解析】试题分
9、析:圆的圆心,半径为,圆的圆心,半径是要使最大,需最大,且最小,最大值为的最小值为,故最大值是;关于轴的对称点,故的最大值为,故选B考点:圆与圆的位置关系及其判定【思路点睛】先根据两圆的方程求出圆心和半径,要使最大,需最大,且最小,最大值为的最小值为,故最大值是,再利用对称性,求出所求式子的最大值9B【解析】根据题意,分析可得,由余弦定理求得的值,由可得结果.【详解】根据题意,则在中,又,则则则则故选:B【点睛】此题考查余弦定理和向量的数量积运算,掌握基本概念和公式即可解决,属于简单题目.10B【解析】利用函数奇偶性可求得在时的解析式和,进而构造出不等式求得结果.【详解】为定义在上的奇函数,.
10、当时,为奇函数,由得:或;综上所述:若,则的解集为.故选:.【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在处有意义时,的情况.11C【解析】利用通项公式找到的系数,令其等于-10即可.【详解】二项式展开式的通项为,令,得,则,所以,解得.故选:C【点睛】本题考查求二项展开式中特定项的系数,考查学生的运算求解能力,是一道容易题.12B【解析】先设直线与圆相切于点,根据题意,得到,再由,根据勾股定理求出,从而可得渐近线方程.【详解】设直线与圆相切于点,因为是以圆的直径为斜边的圆内接三角形,所以,又因为圆与直线的切点为,所以,又,所以,因此,因此有,
11、所以,因此渐近线的方程为.故选B【点睛】本题主要考查双曲线的渐近线方程,熟记双曲线的简单性质即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13【解析】二次函数为偶函数说明一次项系数为0,求得参数,将代入表达式即可求解【详解】由为偶函数,知其一次项的系数为0,所以,所以,故答案为:-5【点睛】本题考查由奇偶性求解参数,求函数值,属于基础题14240【解析】利用二项式展开式的通项公式,令x的指数等于3,计算展开式中含有项的系数即可.【详解】由题意得:,只需,可得,代回原式可得,故答案:240.【点睛】本题主要考查二项式展开式的通项公式及简单应用,相对不难.15 【解析】根据诱
12、导公式和二倍角公式计算得到答案.【详解】,故.故答案为:;.【点睛】本题考查了诱导公式和二倍角公式,属于简单题.160.35【解析】根据对立事件的概率和为1,结合题意,即可求出结果来【详解】解:由题意知本题是一个对立事件的概率,抽到的不是一等品的对立事件是抽到一等品,抽到不是一等品的概率是,故答案为:【点睛】本题考查了求互斥事件与对立事件的概率的应用问题,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)的方程为【解析】(1)令,则,由此能求出点C的轨迹方程(2)令,令直线,联立,得,由此利用根的判别式,韦达定理,三角形面积公式,结合已知条件能求出直线的方
13、程。【详解】解:(1)因为,即直线的斜率分别为且,设点,则,整理得.(2)令,易知直线不与轴重合,令直线,与联立得,所以有,由,故,即,从而,解得,即。所以直线的方程为。【点睛】本题考查椭圆方程、直线方程的求法,考查椭圆方程、椭圆与直线的位置关系,考查运算求解能力,考查化归与转化思想,是中档题。18(1);(2)证明见解析;(3)证明见解析.【解析】(1)求得函数的导函数,由此求得求当日产量为吨时的边际成本.(2)将所要证明不等式转化为证明,构造函数,利用导数证得,由此证得不等式成立.(3)利用(2)的结论,判断出,由此结合对数运算,证得.【详解】(1)因为所以当时,(2)要证,只需证,即证,
14、设则所以在上单调递减,所以所以,即;(3)因为又由(2)知,当时,所以所以所以【点睛】本小题主要考查导数的计算,考查利用导数证明不等式,考查放缩法证明数列不等式,属于难题.19()()【解析】()由可得到,代入,结合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;()由,并结合正弦定理可得到,利用,可得到,进而可求出周长的范围【详解】解:()由可知,.由正弦定理得.由余弦定理得,.()由()知,.的周长为 .,,的周长的取值范围为.【点睛】本题考查了正弦定理、余弦定理在解三角形中的运用,考查了三角形的面积公式,考查了学生分析问题、解决问题的能力,属于基础题20 (1) (2) 【解析】(1)先利用等比数列的性质,可分别求出的值,从而可求出数列的通项公式;(2)利用错位相减求和法可求出数列的前项和【详解】解:(1)由是递增等比数列,联立 ,解得或,因为数列是递增数列,所以只有符合题意,则,结合可得,数列的通项公式:;(2)由,;那么,则,将得:【点睛】本题考查了等比数列的性质,考查了等比数列的通项公式,考查了利用错位相减法求数列的前项和.21(1):,直线:;(2)【解析】(1)由消参法把参数方程化为普通方程,再由公式进行直角坐标方程与极坐标方程的互化;(2)由极径的定义可直接把代入曲线和直线的极坐标方程,求出极径,把比值化为的三角函数,从而可得最大值、【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暑期继续教育学习总结
- 工厂月工作总结(10篇)
- 禁止焚烧秸秆倡议书8篇
- 某公司环境绿化管理制度
- 湖南省永州市(2024年-2025年小学五年级语文)人教版摸底考试(下学期)试卷及答案
- 机械能和内能教案
- 2023年高强2号玻璃纤维布资金需求报告
- 《停车场出场电子不停车缴费系统(ETC)碳减排核算方法(征求意见稿)》及编制说明
- 上海市市辖区(2024年-2025年小学五年级语文)人教版能力评测(下学期)试卷及答案
- 2024年广东公务员考试申论试题(县镇卷)
- 2024-2030年飞机内部紧固件行业市场现状供需分析及投资评估规划分析研究报告
- 2023~2024学年第一学期高一期中考试数学试题含答案
- 企业信用修复服务协议
- 部编人教版三年级语文上册期中测试卷5份(含答案)
- 2023年国家公务员录用考试《行测》行政执法卷-解析
- 建筑物修复行业市场深度分析报告
- 西欧庄园教学设计 统编版九年级历史上册
- 城市轨道交通脱轨事故应急预案
- 2021年四川乐山中考满分作文《把诗情写进青春里》
- 2024新版七年级英语单词表
- 2024年移动网格经理(认证考试)备考试题库大全-上单选、多选题汇
评论
0/150
提交评论