版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,在平面四边形ABCD中,若点E为边CD上的动点,则的最小值为 ( )ABCD2已知等差数列中,则数列的前10项和( )A100B210C380D4003已知分别为圆与的直径,则
2、的取值范围为( )ABCD4已知复数z满足,则在复平面上对应的点在( )A第一象限B第二象限C第三象限D第四象限5如图,用一边长为的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为( )ABCD6设,若函数在区间上有三个零点,则实数的取值范围是( )ABCD7已知倾斜角为的直线与直线垂直,则( )ABCD8已知m为实数,直线:,:,则“”是“”的( )A充要条件B充分不必要条件C必要不充分条件D既不充分也不必要条件9如图是来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的
3、直径分别为直角三角形的斜边,直角边.已知以直角边为直径的半圆的面积之比为,记,则( )ABCD10已知幂函数的图象过点,且,则,的大小关系为( )ABCD11甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( )A丙被录用了B乙被录用了C甲被录用了D无法确定谁被录用了12已知数列满足:,则( )A16B25C28D33二、填空题:本题共4小题,每小题5分,共20分。13已知角的终边过点,则_.14如图,网格纸上小正方形的边长为,粗实线画出的是某几何体的三视图,则该几
4、何体的体积为_.15若x,y满足,则的最小值为_.16设,则除以的余数是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数f(x)xlnx,g(x)x2ax.(1)求函数f(x)在区间t,t1(t0)上的最小值m(t);(2)令h(x)g(x)f(x),A(x1,h(x1),B(x2,h(x2)(x1x2)是函数h(x)图像上任意两点,且满足1,求实数a的取值范围;(3)若x(0,1,使f(x)成立,求实数a的最大值18(12分)已知矩阵的一个特征值为3,求另一个特征值及其对应的一个特征向量.19(12分)以直角坐标系的原点为极坐标系的极点,轴的正半轴为极
5、轴已知曲线的极坐标方程为,是上一动点,点的轨迹为(1)求曲线的极坐标方程,并化为直角坐标方程;(2)若点,直线的参数方程(为参数),直线与曲线的交点为,当取最小值时,求直线的普通方程20(12分)如图,D是在ABC边AC上的一点,BCD面积是ABD面积的2倍,CBD=2ABD=2()若=,求的值;()若BC=4,AB=2,求边AC的长21(12分)已知函数(1)当时,求不等式的解集;(2)若函数的值域为A,且,求a的取值范围.22(10分)已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为. (1)求的方程;(2)过点的直线与相交于、两点,与相交于、两点,且与同向,设在点处的切线与轴的交点为
6、,证明:直线绕点旋转时,总是钝角三角形;(3)为上的动点,、为长轴的两个端点,过点作的平行线交椭圆于点,过点作的平行线交椭圆于点,请问的面积是否为定值,并说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】分析:由题意可得为等腰三角形,为等边三角形,把数量积分拆,设,数量积转化为关于t的函数,用函数可求得最小值。详解:连接BD,取AD中点为O,可知为等腰三角形,而,所以为等边三角形,。设=所以当时,上式取最小值 ,选A.点睛:本题考查的是平面向量基本定理与向量的拆分,需要选择合适的基底,再把其它向量都用基底表示。同
7、时利用向量共线转化为函数求最值。2B【解析】设公差为,由已知可得,进而求出的通项公式,即可求解.【详解】设公差为,,.故选:B.【点睛】本题考查等差数列的基本量计算以及前项和,属于基础题.3A【解析】由题先画出基本图形,结合向量加法和点乘运算化简可得,结合的范围即可求解【详解】如图,其中,所以.故选:A【点睛】本题考查向量的线性运算在几何中的应用,数形结合思想,属于中档题4A【解析】设,由得:,由复数相等可得的值,进而求出,即可得解.【详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【点睛】本题考查共轭复数的求法,考查对复数相等的理解
8、,考查复数在复平面对应的点,考查运算能力,属于常考题.5D【解析】先求出球心到四个支点所在球的小圆的距离,再加上侧面三角形的高,即可求解.【详解】设四个支点所在球的小圆的圆心为,球心为,由题意,球的体积为,即可得球的半径为1,又由边长为的正方形硬纸,可得圆的半径为,利用球的性质可得,又由到底面的距离即为侧面三角形的高,其中高为,所以球心到底面的距离为.故选:D.【点睛】本题主要考查了空间几何体的结构特征,以及球的性质的综合应用,着重考查了数形结合思想,以及推理与计算能力,属于基础题.6D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有
9、,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.7D【解析】倾斜角为的直线与直线垂直,利用相互垂直的直线斜率之间的关系,同角三角函数
10、基本关系式即可得出结果.【详解】解:因为直线与直线垂直,所以,.又为直线倾斜角,解得.故选:D.【点睛】本题考查了相互垂直的直线斜率之间的关系,同角三角函数基本关系式,考查计算能力,属于基础题.8A【解析】根据直线平行的等价条件,求出m的值,结合充分条件和必要条件的定义进行判断即可【详解】当m=1时,两直线方程分别为直线l1:x+y1=0,l2:x+y2=0满足l1l2,即充分性成立,当m=0时,两直线方程分别为y1=0,和2x2=0,不满足条件当m0时,则l1l2,由得m23m+2=0得m=1或m=2,由得m2,则m=1,即“m=1”是“l1l2”的充要条件,故答案为:A【点睛】(1)本题主
11、要考查充要条件的判断,考查两直线平行的等价条件,意在考查学生对这些知识的掌握水平和分析推理能力.(2) 本题也可以利用下面的结论解答,直线和直线平行,则且两直线不重合,求出参数的值后要代入检验看两直线是否重合.9D【解析】由半圆面积之比,可求出两个直角边 的长度之比,从而可知,结合同角三角函数的基本关系,即可求出,由二倍角公式即可求出.【详解】解:由题意知 ,以 为直径的半圆面积,以 为直径的半圆面积,则,即.由 ,得 ,所以.故选:D.【点睛】本题考查了同角三角函数的基本关系,考查了二倍角公式.本题的关键是由面积比求出角的正切值.10A【解析】根据题意求得参数,根据对数的运算性质,以及对数函
12、数的单调性即可判断.【详解】依题意,得,故,故,则.故选:A.【点睛】本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.11C【解析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.12C【解析】依次递推求出得解.【详解】n=1时,n=2时,n=3时,n=4时,n=5时,.故选:C【点睛】本题主要
13、考查递推公式的应用,意在考查学生对这些知识的理解掌握水平.二、填空题:本题共4小题,每小题5分,共20分。13【解析】由题意利用任意角的三角函数的定义,两角和差正弦公式,求得的值【详解】解:角的终边过点,故答案为:【点睛】本题主要考查任意角的三角函数的定义,两角和差正弦公式,属于基础题14【解析】根据三视图知该几何体是三棱柱与半圆锥的组合体,结合图中数据求出它的体积【详解】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为.故答案为:.【点睛】本题考查了根据三视图求简单组合体的体积应用问题,是基础题155【解析】先作出可行域,再做直线,平移,找到使直线在y轴
14、上截距最小的点,代入即得。【详解】作出不等式组表示的平面区域,如图,令,则,作出直线,平移直线,由图可得,当直线经过C点时,直线在y轴上的截距最小,由,可得,因此的最小值为.故答案为:4【点睛】本题考查不含参数的线性规划问题,是基础题。161【解析】利用二项式定理得到,将89写成1+88,然后再利用二项式定理展开即可.【详解】,因展开式中后面10项均有88这个因式,所以除以的余数为1.故答案为:1【点睛】本题考查二项式定理的综合应用,涉及余数的问题,解决此类问题的关键是灵活构造二项式,并将它展开分析,本题是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)m(
15、t)(2)a22.(3)a22.【解析】(1)是研究在动区间上的最值问题,这类问题的研究方法就是通过讨论函数的极值点与所研究的区间的大小关系来进行求解(2)注意到函数h(x)的图像上任意不同两点A,B连线的斜率总大于1,等价于h(x1)h(x2)x1x2(x1x2)恒成立,从而构造函数F(x)h(x)x在(0,)上单调递增,进而等价于F(x)0在(0,)上恒成立来加以研究(3)用处理恒成立问题来处理有解问题,先分离变量转化为求对应函数的最值,得到a,再利用导数求函数M(x)的最大值,这要用到二次求导,才可确定函数单调性,进而确定函数最值【详解】(1) f(x)1,x0,令f(x)0,则x1.当
16、t1时,f(x)在t,t1上单调递增,f(x)的最小值为f(t)tlnt;当0t1时,f(x)在区间(t,1)上为减函数,在区间(1,t1)上为增函数,f(x)的最小值为f(1)1.综上,m(t)(2)h(x)x2(a1)xlnx,不妨取0 x1x2,则x1x20,则由,可得h(x1)h(x2)x1x2,变形得h(x1)x1h(x2)x2恒成立令F(x)h(x)xx2(a2)xlnx,x0,则F(x)x2(a2)xlnx在(0,)上单调递增,故F(x)2x(a2)0在(0,)上恒成立,所以2xa2在(0,)上恒成立因为2x2,当且仅当x时取“”,所以a22.(3)因为f(x),所以a(x1)2
17、x2xlnx.因为x(0,1,则x1(1,2,所以x(0,1,使得a成立令M(x),则M(x).令y2x23xlnx1,则由y0 可得x或x1(舍)当x时,y0,则函数y2x23xlnx1在上单调递减;当x时,y0,则函数y2x23xlnx1在上单调递增所以yln40,所以M(x)0在x(0,1时恒成立,所以M(x)在(0,1上单调递增所以只需aM(1),即a1.所以实数a的最大值为1.【点睛】本题考查了函数与导数综合问题,考查了学生综合分析,转化与划归,数学运算能力,属于难题.18另一个特征值为,对应的一个特征向量【解析】根据特征多项式的一个零点为3,可得,再回代到方程即可解出另一个特征值为
18、,最后利用求特征向量的一般步骤,可求出其对应的一个特征向量.【详解】矩阵的特征多项式为:,是方程的一个根,解得,即 方程即,可得另一个特征值为:,设对应的一个特征向量为: 则由,得得,令,则,所以矩阵另一个特征值为,对应的一个特征向量【点睛】本题考查了矩阵的特征值以及特征向量,需掌握特征多项式的计算形式,属于基础题.19(1),;(2).【解析】(1)设点极坐标分别为,,由可得,整理即可得到极坐标方程,进而求得直角坐标方程;(2)设点对应的参数分别为,则,将直线的参数方程代入的直角坐标方程中,再利用韦达定理可得,则,求得取最小值时符合的条件,进而求得直线的普通方程.【详解】(1)设点极坐标分别
19、为,因为,则,所以曲线的极坐标方程为,两边同乘,得,所以的直角坐标方程为,即.(2)设点对应的参数分别为,则,,将直线的参数方程(参数),代入的直角坐标方程中,整理得.由韦达定理得,所以,当且仅当时,等号成立,则,所以当取得最小值时,直线的普通方程为.【点睛】本题考查极坐标与直角坐标方程的转化,考查利用直线的参数方程研究直线与圆的位置关系20();()【解析】()利用三角形面积公式以及并结合正弦定理,可得结果.()根据,可得,然后使用余弦定理,可得结果.【详解】(),所以所以;(),所以,所以,所以,所以边【点睛】本题考查三角形面积公式,正弦定理以及余弦定理的应用,关键在于识记公式,属中档题.21(1)或(2)【解析】(1)分类讨论去绝对值即可;(2)根据条件分a3和a3两种情况,由2,1A建立关于a的不等式,然后求出a的取值范围.【详解】(1)当a1时,f(x)|x+1|.f(x)|2x+1|1,当x1时,原不等式可化为x12x2,x1;当时,原不等式可化为x+12x2,x1,此时不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国速克感冒胶囊行业投资前景及策略咨询研究报告
- 港口历史与文化遗产保护考核试卷
- 2024至2030年中国羊毛针织袜数据监测研究报告
- 2024-2030年中国橡胶机械行业竞争态势及投资效益预测报告
- 渔业风险管理与危机应对考核试卷
- 光学相机的自动对焦与图像修复技术考核试卷
- 2024-2030年中国柠檬行业市场竞争战略及投资盈利预测报告权威版
- 2024-2030年中国望远镜和双筒望远镜行业市场发展趋势与前景展望战略分析报告
- 2024-2030年中国月子中心行业发展潜力及投资经营模式分析报告
- 2024-2030年中国智能家庭摄像机器人行业市场发展趋势与前景展望战略分析报告
- 2023年全国中学生英语能力竞赛初三年级组试题及答案
- 部编版道德与法治九年级上册 8.2 共圆中国梦 教学设计
- 学生对教师评价表(共8页)
- (完整版)青年就业创业见习基地汇报材料(完整版)
- 月光(羽泉)原版五线谱钢琴谱正谱乐谱.docx
- 660MW机组空预器声波吹灰器可行性研究报告最新(精华版)
- 控制柜安装施工方案
- 动车组火灾检测(报警)系统
- 装饰施工技术标准及要求
- 2018秋七年级虎外考试卷英语试卷
- 河洛择日法[技巧]
评论
0/150
提交评论