




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等比数列的前项和为,若,且公比为2,则与的关系正确的是( )ABCD2已知命题,;命题若,则,下列命题为真命题的是()ABCD3复数满足,则复数在复平面内所对应的点在( )A第一象限B第二象限C第三象限D第四象限4以下关于的命题,正确的是
2、A函数在区间上单调递增B直线需是函数图象的一条对称轴C点是函数图象的一个对称中心D将函数图象向左平移需个单位,可得到的图象5已知集合A=x|x0时,-x0时,函数y=f(x),则当x0时,求函数的解析式”有如下结论:若函数f(x)为偶函数,则当x0时,函数的解析式为y=-f(x);若f(x)为奇函数,则函数的解析式为y=-f(-x)15【解析】由题知该旋转体为两个倒立的圆锥底对底组合在一起,根据圆锥侧面积计算公式可得.【详解】解:由题知该旋转体为两个倒立的圆锥底对底组合在一起,在中,如下图所示,底面圆的半径为,则所形成的几何体的表面积为.故答案为:.【点睛】本题考查旋转体的表面积计算问题,属于
3、基础题.16【解析】利用导数的几何意义计算即可.【详解】由已知,所以,又,所以切线方程为,即.故答案为:【点睛】本题考查导数的几何意义,考查学生的基本计算能力,要注意在某点处的切线与过某点的切线的区别,是一道容易题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析(2)【解析】(1)取中点,连接,根据菱形的性质,结合线面垂直的判定定理和性质进行证明即可;(2)根据面面垂直的判定定理和性质定理,可以确定点到直线的距离即为点到平面的距离,结合垂线段的性质可以确定点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.利用空间向量夹角公式,结合
4、同角的三角函数关系式进行求解即可.【详解】(1)证明:取中点,连接,因为四边形为菱形且.所以,因为,所以,又,所以平面,因为平面,所以.同理可证,因为,所以平面.(2)解:由(1)得平面,所以平面平面,平面平面.所以点到直线的距离即为点到平面的距离.过作的垂线段,在所有的垂线段中长度最大的为,此时必过的中点,因为为中点,所以此时,点到平面的距离最大,最大值为1.以为坐标原点,直线分别为轴建立空间直角坐标系.则所以平面的一个法向量为,设平面的法向量为,则即取,则,所以,所以面与面所成二面角的正弦值为.【点睛】本题考查了线面垂直的判定定理和性质的应用,考查了二面角的向量求法,考查了推理论证能力和数
5、学运算能力.18(1)证明见解析(2)【解析】(1)取中点为,连接,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.(2)以为原点,为,轴建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【详解】(1)证明:取中点为,连接,如下图所示:因为,所以,故为等边三角形,则.连接,因为,所以为等边三角形,则.又,所以平面.因为平面,所以.(2)由(1)知,因为平面平面,平面,所以平面,以为原点,为,轴建立如图所示的空间直角坐标系,易求,则,则,.设平面的法向量,则即令,则,故.设平面的法向量,则则
6、令,则,故,所以.由图可知,二面角为钝二面角角,所以二面角的余弦值为.【点睛】本题考查线面垂直的判定,由线面垂直判定线线垂直,由空间向量法求平面与平面形成二面角的大小,属于中档题.19();()有最大值,最大值为3.【解析】()利用正弦定理将角化边,再由余弦定理计算可得;()由正弦定理可得,则,再根据正弦函数的性质计算可得;【详解】()由得再由正弦定理得因此,又因为,所以.()当时,的周长有最大值,且最大值为3,理由如下:由正弦定理得,所以,所以.因为,所以,所以当即时,取到最大值2,所以的周长有最大值,最大值为3.【点睛】本题考查正弦定理、余弦定理解三角形,以及三角函数的性质的应用,属于中档
7、题.20(1)1;(2)【解析】(1),在和中分别运用余弦定理可表示出,运用算两次的思想即可求得,进而求出;(2)在中,根据余弦定理和基本不等式,可求得,再由三角形的面积公式以及正弦函数的有界性,求出的面积的最大值【详解】(1)由题设,则在和中由余弦定理得:,即解得,(2)在中由余弦定理得,即,所以面积的最大值为,此时.【点睛】本题主要考查余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于中档题21(1).(2)答案见解析【解析】(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【详解】(1),当且仅当时取等号,
8、的最小值;(2)证明:依题意,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法22(1)证明见解析;(2).【解析】(1)构造直线所在平面,由面面平行推证线面平行;(2)以为坐标原点,建立空间直角坐标系,分别求出两个平面的法向量,再由法向量之间的夹角,求得二面角的余弦值.【详解】(1)过点交于点,连接,如下图所示:因为平面平面,且交线为,又四边形为正方形,故可得,故可得平面,又平面,故可得.在三角形中,因为为中点,故可得/,为中点;又因为四边形为等腰梯形,是的中点,故可得/;又,且平面,平面,故面面,又因为平面,故面.即证.(2)连接,作交于点,由(1)可知平面,又因为/,故可得平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 许昌陶瓷职业学院《数字逻辑设计》2023-2024学年第二学期期末试卷
- 信息技术 第二册(五年制高职)课件 9.1.9 我国人工智能的发展现状
- 初中教育教学业务培训稿
- 企业薪酬管理制度
- 儿童画红薯课件
- 商场保洁人员培训
- 四川省卫生类事业单位公开招聘(医学基础知识)近年考试真题库及答案
- 江西省卫生类事业单位竞聘-中药类近年考试真题库-含答案解析
- 2024-2025学年下学期高二英语外研社版同步经典题精练之固定搭配和句型
- 康复护理学术会心得
- 国开(陕西)2024年秋《社会调查》形考作业1-4答案
- 社会组织负责人备案表(社团)
- 人力资源许可证制度(服务流程、服务协议、收费标准、信息发布审查和投诉处理)
- Unit2Whattimeisit?大单元整体教学设计-小学英语四年级下册(人教PEP版)
- 质量检测工程合同范本
- DL∕T 956-2017 火力发电厂停(备)用热力设备防锈蚀导则
- 高考地理总复习考点提分题(全国)专练04 人文地理(选择题专项80题)(原卷版)
- 金华2024年浙江金华职业技术学院招聘7人(第二批)笔试历年典型考题及考点附答案解析
- 高风险群体健康干预计划的开展与实施三篇
- 电解铜购销合同(国内贸易)
- 第二单元音乐故事(二)第1课时《鳟鱼》教案 2023-2024学年人教版初中音乐九年级上册教案1000字
评论
0/150
提交评论