




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、数学鸽巢问题公式这是数学鸽巢问题公式,是优秀的数学教案文章,供老师家长们参考学习。数学鸽巢问题公式第1篇一、教学目标(一)知识与技能通过数学活动让学生了解鸽巢原理,学会简单的鸽巢原理分析方法。(二)过程与方法结合具体的实际问题,通过实验、观察、分析、归纳等数学活动,让学生通过独立思考与合作交流等活动提高解决实际问题的能力。(三)情感态度和价值观在主动参与数学活动的过程中,让学生切实体会到探索的乐趣,让学生切实体会到数学与生活的紧密结合。二、教学重难点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。教学难点:理解“总有”“至少”的意义,理解“至少数=商数1”。三、教学准备多媒体课件。四、
2、教学过程(一)游戏引入出示一副扑克牌。教师:今天老师要给大家表演一个“魔术”。取出大王和小王,还剩下52张牌,下面请5位同学上来,每人随意抽一张,不管怎么抽,至少有2张牌是同花色的。同学们相信吗?5位同学上台,抽牌,亮牌,统计。教师:这类问题在数学上称为鸽巢问题(板书)。因为52张扑克牌数量较大,为了方便研究,我们先来研究几个数量较小的同类问题。【设计意图】从学生喜欢的“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。(二)探索新知1教学例1。(1)教师:把3支铅笔放到2个铅笔盒里,有哪些放法?请同桌二人为一组动手试一试。教师:谁来说一说结果?预设:一个放3支,
3、另一个不放;一个放2支,另一个放1支。(教师根据学生回答在黑板上画图表示两种结果)教师:“不管怎么放,总有一个铅笔盒里至少有2支铅笔”,这句话说得对吗?教师:这句话里“总有”是什么意思?预设:一定有。教师:这句话里“至少有2支”是什么意思?预设:最少有2支,不少于2支,包括2支及2支以上。【设计意图】把教材中例1的“笔筒”改为“铅笔盒”,便于学生准备学具。且用画图和数的分解来表示上述问题的结果,更直观。通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个铅笔盒里至少有2支铅笔”这句话。(2)教师:把4支铅笔放到3个铅笔盒里,有哪些放法?请4人为一组动手试一试。 教师
4、:谁来说一说结果?学生:可以放(4,0,0);(3,1,0);(2,2,0);(2,1,1)。(教师根据学生回答在黑板上画图表示四种结果)引导学生仿照上例得出“不管怎么放,总有一个铅笔盒里至少有2支铅笔”。假设法(反证法):教师:前面我们是通过动手操作得出这一结论的,想一想,能不能找到一种更为直接的方法得到这个结论呢?小组讨论一下。学生进行组内交流,再汇报,教师进行总结:如果每个盒子里放1支铅笔,最多放3支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。这就是平均分的方法。【设计意图】从另
5、一方面入手,逐步引入假设法来说理,从实际操作上升为理论水平,进一步加深理解。教师:把5支铅笔放到4个铅笔盒里呢?引导学生分析“如果每个盒子里放1支铅笔,最多放4支,剩下的1支不管放进哪一个盒子里,总有一个盒子里至少有2支铅笔。首先通过平均分,余下1支,不管放在哪个盒子里,一定会出现“总有一个盒子里至少有2支铅笔”。教师:把6支铅笔放到5个铅笔盒里呢?把7支铅笔放到6个铅笔盒里呢??你发现了什么?引导学生得出“只要铅笔数比铅笔盒数多1,总有一个盒子里至少有2支铅笔”。 教师:上面各个问题,我们都采用了什么方法?引导学生通过观察比较得出“平均分”的方法。【设计意图】让学生自己通过观察比较得出“平均
6、分”的方法,将解题经验上升为理论水平,进一步强化方法、理清思路。(3)教师:现在我们回过头来揭示本节课开头的魔术的结果,你能来说一说这个魔术的道理吗?引导学生分析“如果4人选中了4种不同的花色,剩下的1人不管选那种花色,总会和其他4人里的一人相同。总有一种花色,至少有2人选”。【设计意图】回到课开头提出的问题,揭示悬念,满足学生的好奇心,让学生认识到数学的应用价值。(4)练习教材第68页“做一做”第1题(进一步练习“平均分”的方法)。 5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?2教学例2。(1)课件出示例2。把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。
7、为什么? 先小组讨论,再汇报。引导学生得出仿照例1“平均分”的方法得出“如果每个抽屉放2本,剩下1本不管放在哪个抽屉里,都会变成3本,所以总有一个抽屉里至少放进3本书。”(2)教师:如果把8本书放进3个抽屉,会出现怎样的结论呢?10本呢?11本呢?16本呢?教师根据学生的回答板书:73=2?1不管怎么放,总有一个抽屉里至少放进3本;83=2?2不管怎么放,总有一个抽屉里至少放进3本;103=3?1 不管怎么放,总有一个抽屉里至少放进4本;113=3?2 不管怎么放,总有一个抽屉里至少放进4本;163=5?1 不管怎么放,总有一个抽屉里至少放进6本。教师:观察上述算式和结论,你发现了什么?引导学
8、生得出“物体数抽屉数=商数?余数”“至少数=商数+1”。【设计意图】一步一步引导学生合作交流、自主探索,让学生亲身经历问题解决的全过程,增强学习的积极性和主动性。(三)巩固练习111只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?25个人坐4把椅子,总有一把椅子上至少坐2人。为什么?(四)课堂小结教师:通过这节课的学习,你有哪些新的收获呢?我们学会了简单的鸽巢问题。可以用画图的方法来帮助我们分析,也可以用除法的意义来解答。数学鸽巢问题公式第2篇一堂好的数学课,我认为应该是原生态,充满“数学味”的课。本节课我让学生经历了探究“鸽巢问题”的过程,初步了解了“鸽巢问题”,并能够应用与实
9、际。一、情境导入,初步感知兴趣是最好的老师,在导入新课时,我以4人的抢凳子游戏,初步感受至少有两位同学相同的现象,抓住学生注意力。二、教学时以学生为主体,以学定教由于课前让学生做了预习,所以在课上我并没有“满堂灌”,而是先了解学生的已知和未知点,让预习程度好的同学来试着解决其他同学提出的问题,再师生质疑,完成对新知的传授。这样既培养了学生预习的习惯,又能让学生找到知识的盲点,从而对本节课感兴趣,同时又锻炼了学生的语言表达能力。三、通过练习,解释应用四、适当设计形式多样的练习,可以引起并保持学生的学习兴趣。如,扑克牌的游戏,学生们非常感兴趣,达到了预期的效果。不足:1、学生们语言表达能力还有待提
10、高。2、课堂中教师与速较快。数学鸽巢问题公式第3篇“鸽巢”问题就是“抽屉原理”,教材通过三个例题来呈现本章知识,“鸽巢”问题教学反思。例1:本例描述“抽屉原理”的最简单的情况,例2:本例描述“抽屉原理”更为一般的形式,例3:跟之前教材的编排是一样的,是抽屉原理的一个逆向的应用。本节内容实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力,是课标的重要要求。兴趣是学习最好的老师。所以在本节课我认真钻研教材,吃透教材,尽量找到好的方法引课,在网上搜索了一个较好的引课设计,就照搬了:“同学们:在上新课之前,我们来做个“抢凳子”游戏怎么样?想参与这个游戏的请举手。叫举手的一男一女两个同学上台,然后问,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年陪诊师考试高效提升的方法与试题及答案
- 大学语文冲突解析试题及答案
- 备战育婴师考试的试题及答案2024
- 家庭教育指导师考试中的心理调适试题及答案
- 2024国际物流师考试复习手册及试题及答案
- 黑龙江省双鸭山市尖山区第一中学2024-2025学年高中毕业班第三次教学质量监测文综试题含解析
- 黑龙江省哈尔滨市哈工大附中2025届初三下学期第一次摸拟试化学试题含解析
- 黑龙江省哈尔滨市香坊区达标名校2025届初三质量检测试题(二)化学试题含解析
- 黑龙江省牡丹江市照庆小学2025年三年级数学第二学期期末检测试题含解析
- 黑龙江科技大学《商务日语应用》2023-2024学年第二学期期末试卷
- 社区工作者经典备考题库(必背300题)
- 安徽师范大学成绩单绩点说明
- 2022年北京市中西医结合医院医护人员招聘考试笔试题库及答案解析
- 门窗报价单样板
- 人教版高中物理选择性必修三 第5章第1节原子核的组成课件
- CCEA GC 11-2019 工程造价咨询企业服务清单
- 8.建筑施工设备设施清单
- DB11_T1630-2019 城市综合管廊工程施工及质量验收规范
- 教练技术一阶段讲义(共59页)
- 小学科技社团活动电子版教(学)案20篇
- 露天矿石土方剥离工程施工组织设计
评论
0/150
提交评论