版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第1讲 集合与逻辑用语 一、单选题1(2022全国高考真题)已知集合,则()ABCD【答案】B【解析】【分析】求出集合后可求.【详解】,故,故选:B.2(2022全国高考真题)若集合,则()ABCD【答案】D【解析】【分析】求出集合后可求.【详解】,故,故选:D3(2022全国高考真题(理)设全集,集合M满足,则()ABCD【答案】A【解析】【分析】先写出集合,然后逐项验证即可【详解】由题知,对比选项知,正确,错误故选:4(2022全国高考真题(理)设全集,集合,则()ABCD【答案】D【解析】【分析】解方程求出集合B,再由集合的运算即可得解.【详解】由题意,所以,所以.故选:D.第2讲 函数
2、与导数 一、单选题1(2022全国高考真题)已知函数的定义域为R,且,则()ABC0D1【答案】A【解析】【分析】根据题意赋值即可知函数的一个周期为,求出函数一个周期中的的值,即可解出【详解】因为,令可得,所以,令可得,即,所以函数为偶函数,令得,即有,从而可知,故,即,所以函数的一个周期为因为,所以一个周期内的由于22除以6余4,所以故选:A2(2022全国高考真题(理)已知函数的定义域均为R,且若的图像关于直线对称,则()ABCD【答案】D【解析】【分析】根据对称性和已知条件得到,从而得到,然后根据条件得到的值,再由题意得到从而得到的值即可求解.【详解】因为的图像关于直线对称,所以,因为,
3、所以,即,因为,所以,代入得,即,所以,.因为,所以,即,所以.因为,所以,又因为,联立得,所以的图像关于点中心对称,因为函数的定义域为R,所以因为,所以.所以.故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.3(2022全国高考真题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()ABCD【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】 球的体积为,所以球的半径,
4、设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,当时,所以当时,正四棱锥的体积取最大值,最大值为,又时,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.4(2022全国高考真题)设,则()ABCD【答案】C【解析】【分析】构造函数, 导数判断其单调性,由此确定的大小.【详解】设,因为,当时,当时,所以函数在单调递减,在上单调递增,所以,所以,故,即,所以,所以,故,所以,故,设,则,令,当时,函数单调递减,当时,函数单调递增,又,所以当时,所以当时,函数单调递增,所以,即,所以故选:C.5(2022全国高考真题(文)如图是下列四个函数中的
5、某个函数在区间的大致图像,则该函数是()ABCD【答案】A【解析】【分析】由函数图像的特征结合函数的性质逐项排除即可得解.【详解】设,则,故排除B;设,当时,所以,故排除C;设,则,故排除D.故选:A.6(2022全国高考真题(文)函数在区间的最小值、最大值分别为()ABCD【答案】D【解析】【分析】利用导数求得的单调区间,从而判断出在区间上的最小值和最大值.【详解】,所以在区间和上,即单调递增;在区间上,即单调递减,又,所以在区间上的最小值为,最大值为.故选:D7(2022全国高考真题(理)已知,则()ABCD【答案】A【解析】【分析】由结合三角函数的性质可得;构造函数,利用导数可得,即可得
6、解.【详解】因为,因为当所以,即,所以;设,所以在单调递增,则,所以,所以,所以,故选:A8(2022全国高考真题(理)函数在区间的图象大致为()ABCD【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令,则,所以为奇函数,排除BD;又当时,所以,排除C.故选:A.9(2022全国高考真题(理)当时,函数取得最大值,则()ABCD1【答案】B【解析】【分析】根据题意可知,即可解得,再根据即可解出【详解】因为函数定义域为,所以依题可知,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有故选:B.10(2022全国高考真题(文)
7、已知,则()ABCD【答案】A【解析】【分析】根据指对互化以及对数函数的单调性即可知,再利用基本不等式,换底公式可得,然后由指数函数的单调性即可解出【详解】由可得,而,所以,即,所以又,所以,即,所以综上,故选:A.二、多选题11(2022全国高考真题)已知函数的图像关于点中心对称,则()A在区间单调递减B在区间有两个极值点C直线是曲线的对称轴D直线是曲线的切线【答案】AD【解析】【分析】根据三角函数的性质逐个判断各选项,即可解出【详解】由题意得:,所以,即,又,所以时,故对A,当时,由正弦函数图象知在上是单调递减;对B,当时,由正弦函数图象知只有1个极值点,由,解得,即为函数的唯一极值点;对
8、C,当时,直线不是对称轴;对D,由得:,解得或,从而得:或,所以函数在点处的切线斜率为,切线方程为:即故选:AD12(2022全国高考真题)已知函数及其导函数的定义域均为,记,若,均为偶函数,则()ABCD【答案】BC【解析】【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.【详解】因为,均为偶函数,所以即,所以,则,故C正确;函数,的图象分别关于直线对称,又,且函数可导,所以,所以,所以,所以,故B正确,D错误;若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.故选:BC.【点睛】关键点点睛:解决本题的关键是
9、转化题干条件为抽象函数的性质,准确把握原函数与导函数图象间的关系,准确把握函数的性质(必要时结合图象)即可得解.13(2022全国高考真题)已知函数,则()A有两个极值点B有三个零点C点是曲线的对称中心D直线是曲线的切线【答案】AC【解析】【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.【详解】由题,令得或,令得,所以在上单调递减,在,上单调递增,所以是极值点,故A正确;因,所以,函数在上有一个零点,当时,即函数在上无零点,综上所述,函数有一个零点,故B错误;令,该函数的定义域为,则是奇函数,是的对称中心,将的图象向上移动一个单位得到的
10、图象,所以点是曲线的对称中心,故C正确;令,可得,又,当切点为时,切线方程为,当切点为时,切线方程为,故D错误.故选:AC.三、双空题14(2022全国高考真题)曲线过坐标原点的两条切线的方程为_,_【答案】 【解析】【分析】分和两种情况,当时设切点为,求出函数的导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;【详解】解: 因为,当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;当时,设切点为,由,所以,所以切线方程为,又切线过坐标原点,所以,解得,所以切线方程为,即;故答案为:;15(2022
11、全国高考真题(文)若是奇函数,则_,_【答案】 ; 【解析】【分析】根据奇函数的定义即可求出【详解】因为函数为奇函数,所以其定义域关于原点对称由可得,所以,解得:,即函数的定义域为,再由可得,即,在定义域内满足,符合题意故答案为:;四、填空题16(2022全国高考真题(理)已知和分别是函数(且)的极小值点和极大值点若,则a的取值范围是_【答案】【解析】【分析】由分别是函数的极小值点和极大值点,可得时,时,再分和两种情况讨论,方程的两个根为,即函数与函数的图象有两个不同的交点,构造函数,利用指数函数的图象和图象变换得到的图象,利用导数的几何意义求得过原点的切线的斜率,根据几何意义可得出答案.【详
12、解】解:,因为分别是函数的极小值点和极大值点,所以函数在和上递减,在上递增,所以当时,当时,若时,当时,则此时,与前面矛盾,故不符合题意,若时,则方程的两个根为,即方程的两个根为,即函数与函数的图象有两个不同的交点,,函数的图象是单调递减的指数函数,又,的图象由指数函数向下关于轴作对称变换,然后将图象上的每个点的横坐标保持不变,纵坐标伸长或缩短为原来的倍得到,如图所示:设过原点且与函数的图象相切的直线的切点为,则切线的斜率为,故切线方程为,则有,解得,则切线的斜率为,因为函数与函数的图象有两个不同的交点,所以,解得,又,所以,综上所述,的范围为.【点睛】本题考查了函数的极值点问题,考查了导数的
13、几何意义,考查了转化思想及分类讨论思想,有一定的难度.17(2022全国高考真题)若曲线有两条过坐标原点的切线,则a的取值范围是_【答案】【解析】【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.【详解】,设切点为,则,切线斜率,切线方程为:,切线过原点,,整理得:,切线有两条,,解得或,的取值范围是,故答案为:五、解答题18(2022全国高考真题(文)已知函数(1)当时,求的最大值;(2)若恰有一个零点,求a的取值范围【答案】(1)(2)【解析】【分析】(1)由导数确定函数的单调性,即可得解;(2)求导得,
14、按照、及结合导数讨论函数的单调性,求得函数的极值,即可得解.(1)当时,则,当时,单调递增;当时,单调递减;所以;(2),则,当时,所以当时,单调递增;当时,单调递减;所以,此时函数无零点,不合题意;当时,在上,单调递增;在上,单调递减;又,由(1)得,即,所以,当时,则存在,使得,所以仅在有唯一零点,符合题意;当时,所以单调递增,又,所以有唯一零点,符合题意;当时,在上,单调递增;在上,单调递减;此时,由(1)得当时,所以,此时存在,使得,所以在有一个零点,在无零点,所以有唯一零点,符合题意;综上,a的取值范围为.【点睛】关键点点睛:解决本题的关键是利用导数研究函数的极值与单调性,把函数零点
15、问题转化为函数的单调性与极值的问题.19(2022全国高考真题)已知函数(1)当时,讨论的单调性;(2)当时,求a的取值范围;(3)设,证明:【答案】(1)的减区间为,增区间为.(2)(3)见解析【解析】【分析】(1)求出,讨论其符号后可得的单调性.(2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.(3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.(1)当时,则,当时,当时,故的减区间为,增区间为.(2)设,则,又,设,则,若,则,因为为连续不间断函数,故存在,使得,总有,故在为增函数
16、,故,故在为增函数,故,与题设矛盾.若,则,下证:对任意,总有成立,证明:设,故,故在上为减函数,故即成立.由上述不等式有,故总成立,即在上为减函数,所以.当时,有,所以在上为减函数,所以.综上,.(3)取,则,总有成立,令,则,故即对任意的恒成立.所以对任意的,有,整理得到:,故,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.20(2022全国高考真题)已知函数和有相同的最小值(1)求a;(2)证明:存在直线,其与两条曲线和共有三个不同的交
17、点,并且从左到右的三个交点的横坐标成等差数列【答案】(1)(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当时, 的解的个数、的解的个数均为2,构建新函数,利用导数可得该函数只有一个零点且可得的大小关系,根据存在直线与曲线、有三个不同的交点可得的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)的定义域为,而,若,则,此时无最小值,故.的定义域为,而.当时,故在上为减函数,当时,故在上为增函数,故.当时,故在上为减函数,当时,故在上为增函数,故.因为和有相同的最小值,故,整理得到,其中,设,则,故
18、为上的减函数,而,故的唯一解为,故的解为.综上,.(2)由(1)可得和的最小值为.当时,考虑的解的个数、的解的个数.设,当时,当时,故在上为减函数,在上为增函数,所以,而,设,其中,则,故在上为增函数,故,故,故有两个不同的零点,即的解的个数为2.设,当时,当时,故在上为减函数,在上为增函数,所以,而,有两个不同的零点即的解的个数为2.当,由(1)讨论可得、仅有一个零点,当时,由(1)讨论可得、均无零点,故若存在直线与曲线、有三个不同的交点,则.设,其中,故,设,则,故在上为增函数,故即,所以,所以在上为增函数,而,故在上有且只有一个零点,且:当时,即即,当时,即即,因此若存在直线与曲线、有三
19、个不同的交点,故,此时有两个不同的零点,此时有两个不同的零点,故,所以即即,故为方程的解,同理也为方程的解又可化为即即,故为方程的解,同理也为方程的解,所以,而,故即.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.21(2022全国高考真题(理)已知函数(1)当时,求曲线在点处的切线方程;(2)若在区间各恰有一个零点,求a的取值范围【答案】(1)(2)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对分类讨论,对分两部分研究(1)的定义域为当时,所以切点为,所以切线斜率
20、为2所以曲线在点处的切线方程为(2)设若,当,即所以在上单调递增,故在上没有零点,不合题意若,当,则所以在上单调递增所以,即所以在上单调递增,故在上没有零点,不合题意若(1)当,则,所以在上单调递增所以存在,使得,即当单调递减当单调递增所以当当所以在上有唯一零点又没有零点,即在上有唯一零点(2)当设所以在单调递增所以存在,使得当单调递减当单调递增,又所以存在,使得,即当单调递增,当单调递减有而,所以当所以在上有唯一零点,上无零点即在上有唯一零点所以,符合题意所以若在区间各恰有一个零点,求的取值范围为【点睛】方法点睛:本题的关键是对的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可
21、,肯定要两方面都说明.22(2022全国高考真题(理)已知函数(1)若,求a的取值范围;(2)证明:若有两个零点,则环【答案】(1)(2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为,再利用导数即可得证.(1)的定义域为,令,得当单调递减当单调递增,若,则,即所以的取值范围为(2)由题知,一个零点小于1,一个零点大于1不妨设要证,即证因为,即证因为,即证即证即证下面证明时,设,则设所以,而所以,所以所以在单调递增即,所以令所以在单调递减即,所以;综上, ,所以.【点睛】关键点点睛 :本题是极值点偏移问题,关键点是通过分析法,构造函数
22、证明不等式这个函数经常出现,需要掌握第3讲 三角函数与解三角形 一、单选题1(2022全国高考真题(理)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C的两支交于M,N两点,且,则C的离心率为()ABCD【答案】C【解析】【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,可判断在双曲线的右支,设,即可求出,在中由求出,再由正弦定理求出,最后根据双曲线的定义得到,即可得解;【详解】解:依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,所以,因为,所以在双曲线的右支,所以,设,由,即,则,在中,由正弦定理得,所以,又,所以,即,所以双曲线的离心率故选:C2(2022全国高
23、考真题)若,则()ABCD【答案】C【解析】【分析】由两角和差的正余弦公式化简,结合同角三角函数的商数关系即可得解.【详解】由已知得:,即:,即:,所以,故选:C3(2022全国高考真题)记函数的最小正周期为T若,且的图象关于点中心对称,则()A1BCD3【答案】A【解析】【分析】由三角函数的图象与性质可求得参数,进而可得函数解析式,代入即可得解.【详解】由函数的最小正周期T满足,得,解得,又因为函数图象关于点对称,所以,且,所以,所以,所以.故选:A4(2022全国高考真题(理)设函数在区间恰有三个极值点、两个零点,则的取值范围是()ABCD【答案】C【解析】【分析】由的取值范围得到的取值范
24、围,再结合正弦函数的性质得到不等式组,解得即可【详解】解:依题意可得,因为,所以,要使函数在区间恰有三个极值点、两个零点,又,的图象如下所示:则,解得,即故选:C5(2022全国高考真题(理)沈括的梦溪笔谈是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,是以O为圆心,OA为半径的圆弧,C是的AB中点,D在上,“会圆术”给出的弧长的近似值s的计算公式:当时,()ABCD【答案】B【解析】【分析】连接,分别求出,再根据题中公式即可得出答案.【详解】解:如图,连接,因为是的中点,所以,又,所以三点共线,即,又,所以,则,故,所以.故选:B.6(2022全国高考真题(理)函数在区间
25、的图象大致为()ABCD【答案】A【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令,则,所以为奇函数,排除BD;又当时,所以,排除C.故选:A.7(2022全国高考真题(文)将函数的图像向左平移个单位长度后得到曲线C,若C关于y轴对称,则的最小值是()ABCD【答案】C【解析】【分析】先由平移求出曲线的解析式,再结合对称性得,即可求出的最小值.【详解】由题意知:曲线为,又关于轴对称,则,解得,又,故当时,的最小值为.故选:C.二、填空题8(2022全国高考真题(理)记函数的最小正周期为T,若,为的零点,则的最小值为_【答案】【解析】【分析】首先表示出,根据
26、求出,再根据为函数的零点,即可求出的取值,从而得解;【详解】解: 因为,(,)所以最小正周期,因为,又,所以,即,又为的零点,所以,解得,因为,所以当时;故答案为:9(2022全国高考真题(理)已知中,点D在边BC上,当取得最小值时,_【答案】#【解析】【分析】设,利用余弦定理表示出后,结合基本不等式即可得解.【详解】设,则在中,在中,所以,当且仅当即时,等号成立,所以当取最小值时,.故答案为:.三、解答题10(2022全国高考真题)记的内角A,B,C的对边分别为a,b,c,分别以a,b,c为边长的三个正三角形的面积依次为,已知(1)求的面积;(2)若,求b【答案】(1)(2)【解析】【分析】
27、(1)先表示出,再由求得,结合余弦定理及平方关系求得,再由面积公式求解即可;(2)由正弦定理得,即可求解.(1)由题意得,则,即,由余弦定理得,整理得,则,又,则,则;(2)由正弦定理得:,则,则,.11(2022全国高考真题)记的内角A,B,C的对边分别为a,b,c,已知(1)若,求B;(2)求的最小值【答案】(1);(2)【解析】【分析】(1)根据二倍角公式以及两角差的余弦公式可将化成,再结合,即可求出;(2)由(1)知,再利用正弦定理以及二倍角公式将化成,然后利用基本不等式即可解出(1)因为,即,而,所以;(2)由(1)知,所以,而,所以,即有所以当且仅当时取等号,所以的最小值为12(2
28、022全国高考真题(文)记的内角A,B,C的对边分别为a,b,c已知(1)若,求C;(2)证明:【答案】(1);(2)证明见解析【解析】【分析】(1)根据题意可得,再结合三角形内角和定理即可解出; (2)由题意利用两角差的正弦公式展开得,再根据正弦定理,余弦定理化简即可证出(1)由,可得,而,所以,即有,而,显然,所以,而,所以(2)由可得,再由正弦定理可得,然后根据余弦定理可知,化简得:,故原等式成立27(2022全国高考真题(理)记的内角的对边分别为,已知(1)证明:;(2)若,求的周长【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化
29、角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出,从而可求得,即可得解.(1)证明:因为,所以,所以,即,所以;(2)解:因为,由(1)得,由余弦定理可得, 则,所以,故,所以,所以的周长为.第4讲 平面向量与复数 一、单选题1(2022全国高考真题)已知向量,若,则()ABC5D6【答案】C【解析】【分析】利用向量的运算和向量的夹角的余弦公式的坐标形式化简即可求得【详解】解:,即,解得,故选:C2(2022全国高考真题)在中,点D在边AB上,记,则()ABCD【答案】B【解析】【分析】根据几何条件以及平面向量的线性运算即可解出【详解】因为点D在边AB上,所以,即,所以故选:B3(
30、2022全国高考真题(文)已知向量,则()A2B3C4D5【答案】D【解析】【分析】先求得,然后求得.【详解】因为,所以.故选:D4(2022全国高考真题(理)已知向量满足,则()ABC1D2【答案】C【解析】【分析】根据给定模长,利用向量的数量积运算求解即可.【详解】解:,又9,故选:C.6(2022全国高考真题)()ABCD【答案】D【解析】【分析】利用复数的乘法可求.【详解】,故选:D.7(2022全国高考真题)若,则()ABC1D2【答案】D【解析】【分析】利用复数的除法可求,从而可求.【详解】由题设有,故,故,故选:D8(2022全国高考真题(文)设,其中为实数,则()ABCD【答案
31、】A【解析】【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出【详解】因为R,所以,解得:故选:A.9(2022全国高考真题(理)若,则()ABCD【答案】C【解析】【分析】由共轭复数的概念及复数的运算即可得解.【详解】故选 :C10(2022全国高考真题(文)若则()ABCD【答案】D【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出【详解】因为,所以,所以故选:D.11(2022全国高考真题(理)已知,且,其中a,b为实数,则()ABCD【答案】A【解析】【分析】先算出,再代入计算,实部与虚部都为零解方程组即可【详解】由,得,即故选:二、填空题
32、12(2022全国高考真题(理)设向量,的夹角的余弦值为,且,则_【答案】【解析】【分析】设与的夹角为,依题意可得,再根据数量积的定义求出,最后根据数量积的运算律计算可得【详解】解:设与的夹角为,因为与的夹角的余弦值为,即,又,所以,所以故答案为:13(2022全国高考真题(文)已知向量若,则_【答案】#【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:,解得.故答案为:.第5讲 数列与不等式 一、单选题1(2022全国高考真题)图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图其中是举,是相等的步,相邻桁的举步之比
33、分别为已知成公差为0.1的等差数列,且直线的斜率为0.725,则()A0.75B0.8C0.85D0.9【答案】D【解析】【分析】设,则可得关于的方程,求出其解后可得正确的选项.【详解】设,则,依题意,有,且,所以,故,故选:D2(2022全国高考真题(理)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,依此类推,其中则()ABCD【答案】D【解析】【分析】根据,再利用数列与的关系判断中各项的大小,即可求解.【详解】解:因为,所以,得到,同理,可得,又因为,故,;以此类推,可得,故A错误;,故B错误;
34、,得,故C错误;,得,故D正确.故选:D.3(2022全国高考真题(文)已知等比数列的前3项和为168,则()A14B12C6D3【答案】D【解析】【分析】设等比数列的公比为,易得,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列的公比为,若,则,与题意矛盾,所以,则,解得,所以.故选:D.二、填空题4(2022全国高考真题(文)记为等差数列的前n项和若,则公差_【答案】2【解析】【分析】转化条件为,即可得解.【详解】由可得,化简得,即,解得.故答案为:2.三、解答题5(2022全国高考真题)已知为等差数列,是公比为2的等比数列,且(1)证明:;(2)求集合中元素个
35、数【答案】(1)证明见解析;(2)【解析】【分析】(1)设数列的公差为,根据题意列出方程组即可证出;(2)根据题意化简可得,即可解出(1)设数列的公差为,所以,即可解得,所以原命题得证(2)由(1)知,所以,即,亦即,解得,所以满足等式的解,故集合中的元素个数为6(2022全国高考真题)记为数列的前n项和,已知是公差为的等差数列(1)求的通项公式;(2)证明:【答案】(1)(2)见解析【解析】【分析】(1)利用等差数列的通项公式求得,得到,利用和与项的关系得到当时,,进而得:,利用累乘法求得,检验对于也成立,得到的通项公式;(2)由(1)的结论,利用裂项求和法得到,进而证得.(1),,又是公差
36、为的等差数列,,当时,,整理得:,即,,显然对于也成立,的通项公式;(2) 7(2022全国高考真题(理)记为数列的前n项和已知(1)证明:是等差数列;(2)若成等比数列,求的最小值【答案】(1)证明见解析;(2)【解析】【分析】(1)依题意可得,根据,作差即可得到,从而得证;(2)由(1)及等比中项的性质求出,即可得到的通项公式与前项和,再根据二次函数的性质计算可得(1)解:因为,即,当时,得,即,即,所以,且,所以是以为公差的等差数列(2)解:由(1)可得,又,成等比数列,所以,即,解得,所以,所以,所以,当或时第6讲 立体几何 一、单选题1(2022全国高考真题)已知正三棱台的高为1,上
37、、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为()ABCD【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积【详解】设正三棱台上下底面所在圆面的半径,所以,即,设球心到上下底面的距离分别为,球的半径为,所以,故或,即或,解得符合题意,所以球的表面积为故选:A2(2022全国高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水
38、位从海拔上升到时,增加的水量约为()()ABCD【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积棱台上底面积,下底面积,故选:C3(2022全国高考真题)已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是()ABCD【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】 球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,,所以,所以正四棱锥的体积,所以,当时,当
39、时,所以当时,正四棱锥的体积取最大值,最大值为,又时,时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是.故选:C.4(2022全国高考真题(文)在正方体中,E,F分别为的中点,则()A平面平面B平面平面C平面平面D平面平面【答案】A【解析】【分析】证明平面,即可判断A;如图,以点为原点,建立空间直角坐标系,设,分别求出平面,的法向量,根据法向量的位置关系,即可判断BCD.【详解】解:在正方体中,且平面,又平面,所以,因为分别为的中点,所以,所以,又,所以平面,又平面,所以平面平面,故A正确;如图,以点为原点,建立空间直角坐标系,设,则,则,设平面的法向量为, 则有,可取,同理
40、可得平面的法向量为,平面的法向量为,平面的法向量为,则,所以平面与平面不垂直,故B错误;因为与不平行,所以平面与平面不平行,故C错误;因为与不平行,所以平面与平面不平行,故D错误,故选:A.5(2022全国高考真题(文)已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()ABCD【答案】C【解析】【分析】先证明当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD,四边形ABCD
41、所在小圆半径为r,设四边形ABCD对角线夹角为,则(当且仅当四边形ABCD为正方形时等号成立)即当四棱锥的顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为又则当且仅当即时等号成立,故选:C6(2022全国高考真题(理)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为,侧面积分别为和,体积分别为和若,则()ABCD【答案】C【解析】【分析】设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,根据圆锥的侧面积公式可得,再结合圆心角之和可将分别用表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为,甲圆锥底面半径为,乙圆锥底面圆半径为,则,所
42、以,又,则,所以,所以甲圆锥的高,乙圆锥的高,所以.故选:C.7(2022全国高考真题(理)在长方体中,已知与平面和平面所成的角均为,则()ABAB与平面所成的角为CD与平面所成的角为【答案】D【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出【详解】如图所示:不妨设,依题以及长方体的结构特征可知,与平面所成角为,与平面所成角为,所以,即,解得对于A,A错误;对于B,过作于,易知平面,所以与平面所成角为,因为,所以,B错误;对于C,C错误;对于D,与平面所成角为,而,所以D正确故选:D二、多选题8(2022全国高考真题)如图,四边形为正方形,平面,记三棱锥,的体积分别为,则()ABC
43、D【答案】CD【解析】【分析】直接由体积公式计算,连接交于点,连接,由计算出,依次判断选项即可.【详解】设,因为平面,则,连接交于点,连接,易得,又平面,平面,则,又,平面,则平面,又,过作于,易得四边形为矩形,则,则,则,则,则,故A、B错误;C、D正确.故选:CD.9(2022全国高考真题)已知正方体,则()A直线与所成的角为B直线与所成的角为C直线与平面所成的角为D直线与平面ABCD所成的角为【答案】ABD【解析】【分析】数形结合,依次对所给选项进行判断即可.【详解】如图,连接、,因为,所以直线与所成的角即为直线与所成的角,因为四边形为正方形,则,故直线与所成的角为,A正确;连接,因为平
44、面,平面,则,因为,所以平面,又平面,所以,故B正确;连接,设,连接,因为平面,平面,则,因为,所以平面,所以为直线与平面所成的角,设正方体棱长为,则,所以,直线与平面所成的角为,故C错误;因为平面,所以为直线与平面所成的角,易得,故D正确.故选:ABD三、解答题10(2022全国高考真题)如图,是三棱锥的高,E是的中点(1)证明:平面;(2)若,求二面角的正弦值【答案】(1)证明见解析(2)【解析】【分析】(1)连接并延长交于点,连接、,根据三角形全等得到,再根据直角三角形的性质得到,即可得到为的中点从而得到,即可得证;(2)过点作,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,
45、再根据同角三角函数的基本关系计算可得;(1)证明:连接并延长交于点,连接、,因为是三棱锥的高,所以平面,平面,所以、,又,所以,即,所以,又,即,所以,所以所以,即,所以为的中点,又为的中点,所以,又平面,平面,所以平面(2)解:过点作,如图建立平面直角坐标系,因为,所以,又,所以,则,所以,所以,所以,则,设平面的法向量为,则,令,则,所以;设平面的法向量为,则,令,则,所以;所以设二面角为,由图可知二面角为钝二面角,所以,所以故二面角的正弦值为;11(2022全国高考真题)如图,直三棱柱的体积为4,的面积为(1)求A到平面的距离;(2)设D为的中点,平面平面,求二面角的正弦值【答案】(1)
46、(2)【解析】【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得平面,建立空间直角坐标系,利用空间向量法即可得解.(1)在直三棱柱中,设点A到平面的距离为h,则,解得,所以点A到平面的距离为;(2)取的中点E,连接AE,如图,因为,所以,又平面平面,平面平面,且平面,所以平面,在直三棱柱中,平面,由平面,平面可得,又平面且相交,所以平面,所以两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得,所以,所以,则,所以的中点,则,,设平面的一个法向量,则,可取,设平面的一个法向量,则,可取,则,所以二面角的正弦值为.12(2022全国高考真题(文)如图,四面体中,E为AC
47、的中点(1)证明:平面平面ACD;(2)设,点F在BD上,当的面积最小时,求三棱锥的体积【答案】(1)证明详见解析(2)【解析】【分析】(1)通过证明平面来证得平面平面.(2)首先判断出三角形的面积最小时点的位置,然后求得到平面的距离,从而求得三棱锥的体积.(1)由于,是的中点,所以.由于,所以,所以,故,由于,平面,所以平面,由于平面,所以平面平面.(2)依题意,三角形是等边三角形,所以,由于,所以三角形是等腰直角三角形,所以.,所以,由于,平面,所以平面.由于,所以,由于,所以,所以,所以,由于,所以当最短时,三角形的面积最小值.过作,垂足为,在中,解得,所以,所以.过作,垂足为,则,所以
48、平面,且,所以,所以.13(2022全国高考真题(理)如图,四面体中,E为的中点(1)证明:平面平面;(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值【答案】(1)证明过程见解析(2)与平面所成的角的正弦值为【解析】【分析】(1)根据已知关系证明,得到,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可.(1)因为,E为的中点,所以;在和中,因为,所以,所以,又因为E为的中点,所以;又因为平面,所以平面,因为平面,所以平面平面.(2)连接,由(1)知,平面,因为平面,所以,所以,当
49、时,最小,即的面积最小.因为,所以,又因为,所以是等边三角形,因为E为的中点,所以,因为,所以,在中,所以.以为坐标原点建立如图所示的空间直角坐标系,则,所以,设平面的一个法向量为,则,取,则,又因为,所以,所以,设与平面所成的角的正弦值为,所以,所以与平面所成的角的正弦值为.14(2022全国高考真题(文)小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面是边长为8(单位:)的正方形,均为正三角形,且它们所在的平面都与平面垂直(1)证明:平面;(2)求该包装盒的容积(不计包装盒材料的厚度)【答案】(1)证明见解析;(2)【解析】【分析】(1)分别取的中点,连接,由平面知识
50、可知,依题从而可证平面,平面,根据线面垂直的性质定理可知,即可知四边形为平行四边形,于是,最后根据线面平行的判定定理即可证出;(2)再分别取中点,由(1)知,该几何体的体积等于长方体的体积加上四棱锥体积的倍,即可解出(1)如图所示:,分别取的中点,连接,因为为全等的正三角形,所以,又平面平面,平面平面,平面,所以平面,同理可得平面,根据线面垂直的性质定理可知,而,所以四边形为平行四边形,所以,又平面,平面,所以平面(2)如图所示:,分别取中点,由(1)知,且,同理有,由平面知识可知,所以该几何体的体积等于长方体的体积加上四棱锥体积的倍因为,点到平面的距离即为点到直线的距离,所以该几何体的体积第
51、7讲 解析几何 一、单选题1(2022全国高考真题(理)双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C的两支交于M,N两点,且,则C的离心率为()ABCD【答案】C【解析】【分析】依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,可判断在双曲线的右支,设,即可求出,在中由求出,再由正弦定理求出,最后根据双曲线的定义得到,即可得解;【详解】解:依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,所以,因为,所以在双曲线的右支,所以,设,由,即,则,在中,由正弦定理得,所以,又,所以,即,所以双曲线的离心率故选:C2(2022全国高考真题(理)椭圆的左顶点为A,点P,Q均在C上,
52、且关于y轴对称若直线的斜率之积为,则C的离心率为()ABCD【答案】A【解析】【分析】设,则,根据斜率公式结合题意可得,再根据,将用表示,整理,再结合离心率公式即可得解.【详解】解:,设,则,则,故,又,则,所以,即,所以椭圆的离心率.故选:A.3(2022全国高考真题(文)设F为抛物线的焦点,点A在C上,点,若,则()A2BC3D【答案】B【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点的横坐标,进而求得点坐标,即可得到答案.【详解】由题意得,则,即点到准线的距离为2,所以点的横坐标为,不妨设点在轴上方,代入得,所以.故选:B4(2022全国高考真题(文)已知椭圆的离心率为
53、,分别为C的左、右顶点,B为C的上顶点若,则C的方程为()ABCD【答案】B【解析】【分析】根据离心率及,解得关于的等量关系式,即可得解.【详解】解:因为离心率,解得,分别为C的左右顶点,则,B为上顶点,所以.所以,因为所以,将代入,解得,故椭圆的方程为.故选:B.二、多选题5(2022全国高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则()A直线的斜率为BCD【答案】ACD【解析】【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判
54、断D选项.【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,代入抛物线可得,则,则直线的斜率为,A正确;对于B,由斜率为可得直线的方程为,联立抛物线方程得,设,则,则,代入抛物线得,解得,则,则,B错误;对于C,由抛物线定义知:,C正确;对于D,则为钝角,又,则为钝角,又,则,D正确.故选:ACD.6(2022全国高考真题)已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则()AC的准线为B直线AB与C相切CD【答案】BCD【解析】【分析】求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.【详解】将点的代入抛物线方程得,所
55、以抛物线方程为,故准线方程为,A错误;,所以直线的方程为,联立,可得,解得,故B正确;设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,所以,直线的斜率存在,设其方程为,联立,得,所以,所以或,又,所以,故C正确;因为,所以,而,故D正确.故选:BCD三、填空题7(2022全国高考真题)已知椭圆,C的上顶点为A,两个焦点为,离心率为过且垂直于的直线与C交于D,E两点,则的周长是_【答案】13【解析】【分析】利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转
56、化为的周长,利用椭圆的定义得到周长为.【详解】椭圆的离心率为,椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,为正三角形,过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,判别式, , 得, 为线段的垂直平分线,根据对称性,的周长等于的周长,利用椭圆的定义得到周长为.故答案为:13.8(2022全国高考真题)设点,若直线关于对称的直线与圆有公共点,则a的取值范围是_【答案】【解析】【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【详解】解:关于对称的点的
57、坐标为,在直线上,所以所在直线即为直线,所以直线为,即;圆,圆心,半径,依题意圆心到直线的距离,即,解得,即;故答案为:9(2022全国高考真题)已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为_【答案】【解析】【分析】令的中点为,设,利用点差法得到,设直线,求出、的坐标,再根据求出、,即可得解;【详解】解:令的中点为,因为,所以,设,则,所以,即所以,即,设直线,令得,令得,即,所以,即,解得或(舍去),又,即,解得或(舍去),所以直线,即;故答案为:10(2022全国高考真题)写出与圆和都相切的一条直线的方程_【答案】或或【解析】【分析】先判断两
58、圆位置关系,分情况讨论即可.【详解】圆的圆心为,半径为,圆的圆心为,半径为,两圆圆心距为,等于两圆半径之和,故两圆外切,如图,当切线为l时,因为,所以,设方程为O到l的距离,解得,所以l的方程为,当切线为m时,设直线方程为,其中,由题意,解得,当切线为n时,易知切线方程为,故答案为:或或.11(2022全国高考真题(理)若双曲线的渐近线与圆相切,则_【答案】【解析】【分析】首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可【详解】解:双曲线的渐近线为,即,不妨取,圆,即,所以圆心为,半径,依题意圆心到渐近线的距
59、离,解得或(舍去)故答案为:12(2022全国高考真题(文)记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值_【答案】2(满足皆可)【解析】【分析】根据题干信息,只需双曲线渐近线中即可求得满足要求的e值.【详解】解:,所以C的渐近线方程为,结合渐近线的特点,只需,即,可满足条件“直线与C无公共点”所以,又因为,所以,故答案为:2(满足皆可)13(2022全国高考真题(文)设点M在直线上,点和均在上,则的方程为_【答案】【解析】【分析】设出点M的坐标,利用和均在上,求得圆心及半径,即可得圆的方程.【详解】解:点M在直线上,设点M为,又因为点和均在上,点M到两点的距离相等且为半径
60、R,解得,的方程为.故答案为:14(2022全国高考真题(文)过四点中的三点的一个圆的方程为_【答案】或或或;【解析】【分析】设圆的方程为,根据所选点的坐标,得到方程组,解得即可;【详解】解:依题意设圆的方程为,若过,则,解得,所以圆的方程为,即;若过,则,解得,所以圆的方程为,即;若过,则,解得,所以圆的方程为,即;若过,则,解得,所以圆的方程为,即;故答案为:或或或;四、解答题15(2022全国高考真题)已知双曲线的右焦点为,渐近线方程为(1)求C的方程;(2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面中选取两个作为条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水利水电板房施工合同
- 教育机构课程开发指南
- 古建筑遗址改造工程合同
- 2024年电焊作业质量保证合同书2篇带眉脚
- 2025版生态环保治理工程合伙合作简单协议书3篇
- 2025年度环境教育安全生产及推广服务合同2篇
- 2025年合伙购买豪华轿车协议书范本3篇
- 2025年度网络安全防护解决方案定制合同6篇
- 2024年员工临时出差费用预借合同3篇
- 2025版C型钢新能源项目配套C型钢供应合同3篇
- 2024年盾构操作工职业技能竞赛理论考试题库(含答案)
- 家庭教育与孩子的阅读习惯培养
- 沪科黔科版《综合实践活动》5上农业小当家 活动一《花坛小暖棚》课件
- 期末素养展示试卷-2024-2025学年统编版语文三年级上册
- 大学试卷(示范)
- 高职院校智能制造实验室实训中心建设方案
- 房产交易管理平台行业发展预测分析
- 劳动与社会保障法-001-国开机考复习资料
- 云南省昆明市(2024年-2025年小学六年级语文)部编版期末考试(上学期)试卷及答案
- GB 4396-2024二氧化碳灭火剂
- 美丽的秋天景色作文500字小学
评论
0/150
提交评论