版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、中值定理中值定理应用:应用:洛必达法则(求解未定式极限)洛必达法则(求解未定式极限)罗尔中值定理拉格朗日中值定理柯西中值定理泰勒公式 推广推广三.微分中值定理 目录 上页 下页 返回 结束 一、罗尔一、罗尔( Rolle )定理定理第一节二、拉格朗日二、拉格朗日( Lagrange )中值定理中值定理 三、柯西三、柯西(Cauchy)中值定理中值定理 中值定理 目录 上页 下页 返回 结束 费马费马(fermat)引理引理一、罗尔一、罗尔( Rolle )定理定理,)(0有定义在xU且 )(0 xf 存在, )()(0 xfxf)(或0)(0 xf证证: 设, )()(, )(0000 xfx
2、xfxUxx则)(0 xf xxfxxfx)()(lim000)0(x)(0 xf)0(x)(0 xf000)(0 xf)(xfy 证毕xyO0 x目录 上页 下页 返回 结束 罗尔(罗尔( Rolle )定理)定理)(xfy 满足:(1) 在区间 a , b 上连续(2) 在区间 (a , b) 内可导(3) f ( a ) = f ( b ),使. 0)(f证证:,上连续在因,)(baxf故在 a , b 上取得最大值 M 和最小值 m .若 M = m , 则, ,)(baxMxf因此.0)(, ),(fba在( a , b ) 内至少存在一点xyab)(xfy O目录 上页 下页 返回
3、 结束 若 M m , 则 M 和 m 中至少有一个与端点值不等,不妨设 , )(afM 则至少存在一点, ),(ba使,)(Mf. 0)(f注意注意:定理的条件不全不全具备, 结论不一定成立. 1,010,)(xxxxf则由费马引理得 1 , 1)(xxxf 1 ,0)(xxxfx1yOx1y1Ox1yOxyab)(xfy O不连续在 1 , 0不可导在) 1 , 0() 1 ()0(ff例如,目录 上页 下页 返回 结束 例例1. 证明方程0155 xx, 15)(5xxxf. 3) 1 (, 1)0(ff, 0)(0 xf, ) 1,0(011xxx) 1(5)(4xxf),1,0(,
4、0 x有且仅有一个小于1 的正实根 .证证: 1) 存在性 .则)(xf在 0 , 1 连续 , 且由介值定理知存在, ) 1 ,0(0 x使即方程有小于 1 的正根.0 x2) 唯一性 .假设另有, 0)(1xf使在以)(xf10, xx为端点的区间满足罗尔定理条件 ,之间在10, xx至少存在一点,. 0)(f使但矛盾, 故假设不真!设目录 上页 下页 返回 结束 二、拉格朗日中值定理二、拉格朗日中值定理 )( (1) 在区间 a , b 上连续)(xfy 满足:(2) 在区间 ( a , b ) 内可导至少存在一点, ),(ba使.)()()(abafbff思路思路: 利用逆向思维逆向思
5、维找出一个满足罗尔定理条件的函数作辅助函数显然 ,)(x在a, b 上连续, 在(a, b)内可导, 且证证: 问题转化为证)(x)(xfxabafbf)()()(a由罗尔定理知至少存在一点, ),(ba,0)(使即定理结论成立 ., )(babbfaafb)()(0)()()(abafbff证毕xyab)(xfy Oxyabafbf)()(目录 上页 下页 返回 结束 ),(,)()()(baabafbff拉格朗日中值定理的有限增量形式:推论推论: 若函数在区间 I 上满足,0)( xf则)(xf在 I 上必为常数.)(xf证证: 在 I 上任取两点, )(,2121xxxx上用拉在,21x
6、x格朗日中值公式 , 得0)()(12xfxf)(12xxf)(21xx)()(12xfxf由 的任意性知, 21,xx)(xf在 I 上为常数 .) 10()(0 xxxfy,00 xxbxa令则目录 上页 下页 返回 结束 例例2. 证明等式. 1, 1,2arccosarcsinxxx证证: 设,arccosarcsin)(xxxf上则在) 1, 1()(xf由推论可知Cxxxfarccosarcsin)( (常数) 令 x = 0 , 得.2C又,2) 1(f故所证等式在定义域 上成立. 1, 1自证自证:),(x,2cotarcarctanxx211x211x0经验经验: 欲证Ix时
7、,)(0Cxf只需证在 I 上, 0)( xf,0Ix 且.)(00Cxf使目录 上页 下页 返回 结束 例例3. 证明不等式证证: 设, )1ln()(ttf上满足拉格朗日在则,0)(xtf中值定理条件,即因为故. )0()1ln(1xxxxx)0()(fxf)1ln(xxx0,11x xx1x)0()1ln(1xxxxxxxf0, )0)(因此应有目录 上页 下页 返回 结束 三、柯西三、柯西(Cauchy)中值定理中值定理0)()()()()()(fFaFbFafbf)(分析分析:)(xf及(1) 在闭区间 a , b 上连续(2) 在开区间 ( a , b ) 内可导(3)在开区间 (
8、 a , b ) 内至少存在一点, ),(ba使.)()()()()()(FfaFbFafbf满足 :)(xF0)( xF)()(aFbF)(abFba0问题转化为证)()()()()()()(xfxFaFbFafbfx构造辅助函数构造辅助函数目录 上页 下页 返回 结束 证证: 作辅助函数)()()()()()()(xfxFaFbFafbfx)()()()()()()()(baFbFbFafaFbfa,),(,)(内可导在上连续在则babax且, ),(ba使, 0)(即由罗尔定理知, 至少存在一点.)()()()()()(FfaFbFafbf思考思考: 柯西定理的下述证法对吗 ?),(,
9、)()()(baabfafbf),(, )()()(baabFaFbF两个 不一定相同错错! !上面两式相比即得结论. 目录 上页 下页 返回 结束 )0() 1 (ff)0() 1 (FF例例4. 设).0() 1 (2)(fff2)(01)0() 1 (fffxxxf)()(2,)(2xxF,) 1 ,0(, 1 ,0)(内可导在上连续在xf至少存在一点),1,0(使证证: 问题转化为证设则)(, )(xFxf在 0, 1 上满足柯西中值定理条件, 因此在 ( 0 , 1 ) 内至少存在一点 , 使)(f )(F012即)0() 1 (2)(fff证明目录 上页 下页 返回 结束 11ln
10、cos1lnlne1lnsinlnesin)e , 1(,)()() 1 (e) 1 (e)FfFFff例例5. 试证至少存在一点)e , 1(使.lncos1sinlncos1sin 证证: 用柯西中值定理 .xxFxxfln)(,lnsin)(则 f (x) , F(x) 在 1 , e 上满足柯西中值定理条件, 令因此 11lncoslncos1sin即分析分析:目录 上页 下页 返回 结束 内容小结内容小结1. 微分中值定理的条件、结论及关系罗尔定理拉格朗日中值定理柯西中值定理)()(afbfxxF)()()(afbfxxF)(2. 微分中值定理的应用(1) 证明恒等式(2) 证明不等
11、式(3) 证明有关中值问题的结论关键关键: 利用逆向思维设辅助函数费马引理目录 上页 下页 返回 结束 二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式 第二节一、泰勒公式的建立一、泰勒公式的建立三、泰勒公式的应用三、泰勒公式的应用 应用目的用多项式近似表示函数.理论分析近似计算泰勒公式 目录 上页 下页 返回 结束 特点:)(01xp)(0 xf)(0 xf 一、泰勒公式的建立一、泰勒公式的建立)(xf)()(000 xxxfxf)(1xp以直代曲以直代曲0 x)(1xp)(01xp在微分应用中已知近似公式 :需要解决的问题如何提高精度 ?如何估计误差 ?xx 的一次多项式xy)
12、(xfy O目录 上页 下页 返回 结束 1. 求求 n 次近似多项式次近似多项式要求要求:, )(xpn)(0!212xpan , )(0 xf ,)(0)(!1xpannnn)(0)(xfn故)(xpn)(0 xf)(00 xxxf!21!1nnnxxxf)(00)(!1n200)(xxxf !21令)(xpn则)(xpn )(xpnnan!)()(xpnn)(00 xpan, )(0 xf, )()(00 xfxpn)(01xpan, )(0 xf 1a)(202xxa10)(nnxxan2!2 a20)() 1(nnxxann, )()(00 xfxpn)()(,0)(0)(xfxpn
13、nn0annxxaxxaxxa)()()(020201目录 上页 下页 返回 结束 )0(之间与在nx )( )(10nnxxxR )(2) 1( )(0)(xnRnnnn2. 余项估计余项估计)()()(xpxfxRnn令(称为余项) ,)(0 xRn)(0 xRn0)(0)(xRnn10)()(nnxxxRnnxnR)(1()(011 )(1( )(011nnxnR1022)() 1()( nnxnnR! ) 1()()1(nRnn则有)(0 xRn0)(0 xRn0)(0)(xRnn0 x)01(之间与在xx)102(之间与在x目录 上页 下页 返回 结束 )()()(xpxfxRnn1
14、0)()(nnxxxR! ) 1()()1(nRnn)0(之间与在xx,0)()1(xpnn10)1()(! ) 1()()(nnnxxnfxR)()()1()1(xfxRnnn时的某邻域内当在Mxfxn)() 1(0)0(之间与在xx10! ) 1()(nnxxnMxR)()()(00 xxxxoxRnn目录 上页 下页 返回 结束 公式 称为 的 n 阶泰勒公式阶泰勒公式 .)(xf公式 称为n 阶泰勒公式的拉格朗日余项拉格朗日余项 .泰勒泰勒(Taylor)公式公式:内具有的某开区间在包含若),()(0baxxf1n直到阶的导数 ,),(bax时, 有)(xf)(0 xf)(00 xxx
15、f200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn其中10)1()(! ) 1()()(nnnxxnfxR则当)0(之间与在xx目录 上页 下页 返回 结束 公式 称为n 阶泰勒公式的皮亚诺皮亚诺(Peano) 余项余项 .在不需要余项的精确表达式时 , 泰勒公式可写为)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(0nxxo)()(0nnxxoxR注意到* 可以证明: 阶的导数有直到在点nxxf0)( 式成立目录 上页 下页 返回 结束 特例特例:(1) 当 n = 0 时, 泰勒公式变为)(xf)(0 xf)(0
16、xxf(2) 当 n = 1 时, 泰勒公式变为给出拉格朗日中值定理)(xf)(0 xf)(00 xxxf20)(!2)(xxf 可见)(xf)(0 xf)(00 xxxf201)(!2)()(xxfxR 误差)(xf)(0 xf)(00 xxxf10)1()(! ) 1()(nnxxnf200)(!2)(xxxf nnxxnxf)(!)(00)(fd)0(之间与在xx)0(之间与在xx)0(之间与在xx)0(之间与在xx目录 上页 下页 返回 结束 称为麦克劳林麦克劳林( Maclaurin )公式公式 ., 00 x则有)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!
17、2)0(xf nnxnf!)0()(在泰勒公式中若取)(xf)(0 xf)(00 xxxf10)1()(! ) 1()(nnxxnf200)(!2)(xxxf nnxxnxf)(!)(00)()0(之间与在xx)(xf)0(fxf)0( ,)()1(Mxfn则有误差估计式1! ) 1()(nnxnMxR2!2)0(xf nnxnf!)0()(若在公式成立的区间上由此得近似公式, ) 10(x记目录 上页 下页 返回 结束 二、几个初等函数的麦克劳林公式二、几个初等函数的麦克劳林公式xxfe)() 1 (,e)()(xkxf),2, 1(1)0()(kfkxe1x!33x!nxn)(xRn!22
18、x其中)(xRn!) 1( n) 10(1nxxe)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()(麦克劳林公式麦克劳林公式 ) 10(目录 上页 下页 返回 结束 )sin(212mx)cos() 1(xm)sin( xxxfsin)()2()()(xfkxsinx!33x!55x! ) 12(12mxm)(2xRm其中)(2xRm2k2sin)0()(kfkmk2,012 mk,) 1(1m),2, 1(m1) 1(m) 10(12mx!) 12(m)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf n
19、nxnf!)0()() 10(麦克劳林公式麦克劳林公式 目录 上页 下页 返回 结束 麦克劳林公式麦克劳林公式 ! )2(2mxmxxfcos)()3(类似可得xcos1!22x!44x)(12xRm其中)(12xRm! )22(m)cos() 1(1xm) 10(m) 1(22mx)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(目录 上页 下页 返回 结束 ) 1(,)1 ()()4(xxxf)()(xfk)1 (x1x2xnx)(xRn其中)(xRn) 10(kxk)1)(1() 1() 1() 1()0()(kfk),2
20、, 1(k!2 ) 1(! n) 1() 1(n)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(麦克劳林公式麦克劳林公式 目录 上页 下页 返回 结束 ) 1()1ln()()5(xxxf已知)1ln(xx22x33xnxn)(xRn其中)(xRn11)1 (1) 1(nnnxxn) 10(1) 1(n因此可得)()(xfkkkxk)1 (! ) 1() 1(1),2, 1(k)(xf)0(fxf)0( 1) 1(! ) 1()(nnxnxf2!2)0(xf nnxnf!)0()() 10(麦克劳林公式麦克劳林公式 目录 上页
21、 下页 返回 结束 三、泰勒公式的应用三、泰勒公式的应用1. 在近似计算中的应用在近似计算中的应用 误差1! ) 1()(nnxnMxRM 为)() 1(xfn在包含 0 , x 的某区间上的上界.需解问题的类型:1) 已知 x 和误差限 , 要求确定项数 n ;2) 已知项数 n 和 x , 计算近似值并估计误差;3) 已知项数 n 和误差限 , 确定公式中 x 的适用范围.)(xf)0(fxf)0( 2!2)0(xf nnxnf!)0()(目录 上页 下页 返回 结束 例例1. 计算无理数 e 的近似值 , 使误差不超过.106解解: 已知xe! ) 1( nxe1nx令 x = 1 ,
22、得e) 10(!) 1(e!1!2111nn) 10(由于,3ee0欲使) 1 (nR!) 1(3n610由计算可知当 n = 9 时上式成立 ,因此e!91!21112.718282xe1x!33x!nxn!22x的麦克劳林公式为目录 上页 下页 返回 结束 例例2. 用近似公式!21cos2xx计算 cos x 的近似值,使其精确到 0.005 , 试确定 x 的适用范围.解解: 近似公式的误差)cos(!4)(43xxxR244x令005. 0244x解得588. 0 x即当588. 0 x时, 由给定的近似公式计算的结果能准确到 0.005 .目录 上页 下页 返回 结束 2. 利用泰
23、勒公式求极限利用泰勒公式求极限例例3. 求.43443lim20 xxxx解解:由于x431243 x21)1 (243x 2)(14321x!21) 1(2121243)( x)(2xo2x用泰勒公式将分子展到项,11)1 (! ) 1()() 1(nnxxnnnx! n) 1() 1(n)1 (x1x2x!2 ) 1() 10(x3421)1 (243x220 limxx 原式)(2216921xox 329x43)(2216941xox 2x43)(2216941xox 目录 上页 下页 返回 结束 11)1 (! ) 1()() 1(nnxxnnnx! n) 1() 1(n)1 (x1
24、x2x!2 ) 1() 10(3. 利用泰勒公式证明不等式利用泰勒公式证明不等式例例4. 证明).0(82112xxxx证证:21)1 (1xx21x2) 121(21!21x325)1)(221)(121(21!31xx) 10(3225)1 (161821xxxx)0(82112xxxx+目录 上页 下页 返回 结束 内容小结内容小结1. 泰勒公式泰勒公式其中余项)(0nxxo当00 x时为麦克劳林公式麦克劳林公式 .)(xf)(0 xf)(00 xxxf200)(!2)(xxxf nnxxnxf)(!)(00)()(xRn10)1()(! ) 1()()(nnnxxnfxR)0(之间与在
25、xx目录 上页 下页 返回 结束 2. 常用函数的麦克劳林公式常用函数的麦克劳林公式,ex, )1ln(x,sin x,cos x)1 (x3. 泰勒公式的应用泰勒公式的应用(1) 近似计算(3) 其他应用求极限 , 证明不等式 等.(2) 利用多项式逼近函数 目录 上页 下页 返回 结束 泰勒多项式逼近泰勒多项式逼近12! ) 12() 1(9!917!715!513!311sinnnxxxxxxxn)(2nxo!33xxy!5!353xxxy!7!5!3753xxxxyxysinxy xsin6422464224xyO目录 上页 下页 返回 结束 泰勒多项式逼近泰勒多项式逼近12! ) 1
26、2() 1(9!917!715!513!311sinnnxxxxxxxn)(2nxoxsinxysin!9!7!5!39753xxxxxy!11!9!7!5!3119753xxxxxxy642246Ox4224y目录 上页 下页 返回 结束 三、其他未定式三、其他未定式 二、二、 型未定式型未定式一、一、 型未定式型未定式00第三节 洛必达法则 目录 上页 下页 返回 结束 )()(limxgxf微分中值定理函数的性态导数的性态函数之商的极限导数之商的极限 转化00( 或 型)()(limxgxf本节研究本节研究:洛必达法则洛必达法则目录 上页 下页 返回 结束 一、一、0)(lim)(lim
27、) 1xFxfaxax)()(lim)3xFxfax存在 (或为 )()(lim)()(limxFxfxFxfaxax,)()()()2内可导在与aUxFxf0)( xF且定理定理 1.型未定式型未定式00(洛必达法则) 目录 上页 下页 返回 结束 ( 在 x , a 之间)证证: 无妨假设, 0)()(aFaf在指出的邻域内任取,ax 则)(, )(xFxf在以 x, a 为端点的区间上满足柯0)(lim)(lim) 1xFxfaxax故)()()()()()(aFxFafxfxFxf)()(Ff)()(limxFxfax)()(limFfax)()(limxFxfax)3定理条件定理条件
28、: 西定理条件,)()(lim)3xFxfax存在 (或为 ),)()()()2内可导在与aUxFxf0)( xF且目录 上页 下页 返回 结束 推论推论1. 定理 1 中ax 换为下列过程之一:, ax, ax,xx推论推论 2. 若)()(limxFxf满足定且型仍属)(, )(,00 xFxf理1条件, 则)()(lim)()(limxFxfxFxf)()(limxFxf 条件 2) 作相应的修改 , 定理 1 仍然成立.,x)()(lim)()(limxFxfxFxfaxax洛必达法则目录 上页 下页 返回 结束 例例1. 求.123lim2331xxxxxx解解: 原式型0023注意
29、注意: 不是未定式不能用洛必达法则 !266lim1xxx166lim1x332x1232 xx lim1x洛洛266lim1xxx洛洛目录 上页 下页 返回 结束 例例2. 求.arctanlim12xxx解解: 原式 xlim型00221limxxx1211x21x11lim21xx型洛洛目录 上页 下页 返回 结束 二、二、型未定式型未定式)(lim)(lim) 1xFxfaxax)()(lim)3xFxfax存在 (或为)()(limxFxfax定理定理 2.证证: 仅就极限)()(limxFxfax存在的情形加以证明 .)()(limxFxfax(洛必达法则),)()()()2内可导
30、在与aUxFxf0)( xF且目录 上页 下页 返回 结束 1)0)()(limxFxfax的情形)()(limxFxfax limax)(1xF)(1xf limax)()(12xFxF)()(12xfxf)()()()(lim2xfxFxFxfax)()(lim)()(lim2xfxFxFxfaxax)()(lim)()(lim1xfxFxFxfaxax)()(lim)()(limxFxfxFxfaxax从而型00目录 上页 下页 返回 结束 2)0)()(limxFxfax的情形. 取常数,0k,0 kkxFxfax)()(lim)()()(limxFxFkxfax)()()(limxF
31、xFkxfax)()()(limxFxFkxfaxkxFxfax)()(lim)()(lim)()(limxFxfxFxfaxax可用 1) 中结论目录 上页 下页 返回 结束 3)()(limxFxfax时, 结论仍然成立. ( 证明略 )说明说明: 定理中ax 换为之一, 条件 2) 作相应的修改 , 定理仍然成立., ax, ax,xx,x目录 上页 下页 返回 结束 例例3. 求. )0(lnlimnxxnx解解:原式11limnxxxnnxxn1lim0例例4. 求求解解: (1) n 为正整数的情形.原式0 xnxxnelim1xnxxnne) 1(lim22. )0(elim, 0nxxnx型型洛洛xnxne!lim洛洛洛洛目录 上页 下页 返回 结束 例例4. 求. )0(elim, 0nxxnx(2) n 不为正整数的情形.nx从而xnxexkxexkxe1由(1)0elimelim1xkxxkxx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度退休返聘人员合同终止告知书
- 2025年度医疗健康管理系统软件购销合同模板
- 2025年度汽车零部件车辆质押租赁协议
- 2025年度股权并购终止协议
- 2025年度电商平台内容创作者孵化合作合同
- 二零二五年度海洋生态保护区海域租赁合同
- 二零二五年度新能源储能设备融资租赁合同主体权益与能源安全
- 2025年度遗产继承财产分配与公司股权激励及员工持股协议
- 2025版互联网保险产品退款协议合同3篇
- 2025年度创业孵化器股权变更合作协议
- 2025年度公务车辆私人使用管理与责任协议书3篇
- 售后工程师述职报告
- 绿化养护难点要点分析及技术措施
- 2024年河北省高考历史试卷(含答案解析)
- 车位款抵扣工程款合同
- 小学六年级数学奥数题100题附答案(完整版)
- 高中综评项目活动设计范文
- 英汉互译单词练习打印纸
- 2023湖北武汉华中科技大学招聘实验技术人员24人笔试参考题库(共500题)答案详解版
- 一氯二氟甲烷安全技术说明书MSDS
- 物流签收回执单
评论
0/150
提交评论