




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上数学网继【小学数学趣题巧算百题百讲百练】系列后又最新推出【小学数学解题思路大全】系列!本系列包括式题的巧解妙算、巧想妙算文字题 、巧想妙算填充、判断、选择题、 巧想妙算数的基本知识题、巧解整除问题 、巧想妙算应用题、巧想妙算初步几何知识题等几部分,几乎囊括了所有类型的例题及解题思路。 数学网将会为广大数学爱好者、小学生和家长提供更多的资源。 欢迎大家提供意见和建议,积极参与,共同进步! 1.特殊数题(1)2112当被减数和减数个位和十位上的数字(零除外)交叉相等时,其差为被减数与减数十位数字的差乘以9。因为这样的两位数减法,最低起点是2112,差为9,即(21)9。减
2、数增加1,其差也就相应地增加了一个9,故3113(31)918。减数从1289,都可类推。被减数和减数同时扩大(或缩小)十倍、百倍、千倍,常数9也相应地扩大(或缩小)相同的倍数,其差不变。如210120(21)9090,0.650.56(65)0.090.09。(2)3151个位数字都是1,十位数字的和小于10的两位数相乘,其积的前两位是十位数字的积,后两位是十位数字的和同1连在一起的数。若十位数字的和满10,进1。如证明:(10a1)(10b1)100ab10a10b1100ab10(ab)1(3)2686 4262个位数字相同,十位数字和是10的两位数相乘,十位数字的积与个位数字的和为积的
3、前两位数,后两位是个位数的积。若个位数的积是一位数,前面补0。证明:(10ac)(10bc)100ab10c(ab)cc100(abc)cc (ab10)。(4)1719十几乘以十几,任意一乘数与另一乘数的个位数之和乘以10,加个位数的积。原式(179)1079323证明:(10a)(10b)10010a10bab(10a)b10ab。(5)6369十位数字相同,个位数字不同的两位数相乘,用一个乘数与另个乘数的个位数之和乘以十位数字,再乘以10,加个位数的积。原式(639)610397260274347。证明:(10ac)(10ad)100aa10ac10adcd10a(10ac)dcd。(6
4、)8387十位数字相同,个位数字的和为10,用十位数字加1的和乘以十位数字的积为前两位数,后两位是个位数的积。如证明:(10ac)(10ad)=100aa10a(cd)cd100a(a1)cd(cd10)。(7)3822十位数字的差是1,个位数字的和是10且乘数的个位数字与十位数字相同的两位数相乘,积为被乘数的十位数与个位数的平方差。原式(308)(308)30282836。(8)8837被乘数首尾相同,乘数首尾的和是10的两位数相乘,乘数十位数字与1的和乘以被乘数的相同数字,是积的前两位数,后两位是个位数的积。(9)3615乘数是15的两位数相乘。被乘数是偶数时,积为被乘数与其一半的和乘以1
5、0;是奇数时,积为被乘数加上它本身减去1后的一半,和的后面添个5。5410540。5515(10)125101三位数乘以101,积为被乘数与它的百位数字的和,接写它的后两位数。1251126。原式12625。再如348101,因为3483351,原式35148。(11)8449一个数乘以49,把这个数乘以100,除以2,再减去这个数。原式84002844200844116。(12)8599两位数乘以9、99、999、。在被乘数的后面添上和乘数中9的个数一样多的0、再减去被乘数。原式8500858415不难看出这类题的积:最高位上的两位数(或一位数),是被乘数与1的差;最低位上的两位数,是100
6、与被乘数的差;中间数字是9,其个数是乘数中9的个数与2的差。证明:设任意两位数的个位数字为b、十位数字为a(a0),则如果被乘数的个位数是1,例如31999在999前面添30为30999,再减去30,结果为30969。71999970。这是因为任何一个末位为1的两位自然数都可表示为(10a1)的形式,由9组成的自然数可表示为(10n1)的形式,其积为(10a1)(10n1)10n1a(10n1)10a。(13)119这是一道颇为繁复的计算题。原式0.。根据“如果被除数不变,除数扩大(或缩小)若干倍,商反而缩小(或扩大)相同倍”和“商不变”性质,可很方便算出结果。原式转化为0.11.9,把1.9
7、看作2,计算程序:(1)先用0.120.05。(2)把商向右移动一位,写到被除数里,继续除如此除到循环为止。仔细分析这个算式:加号前面的0.05是0.12的商,后面的0.050.11.9中0.050.10.005,就是把商向右移动一位写到被除数里,除以1.9。这样我们又可把除数看作2继续除,依此类推。除数末位是9,都可用此法计算。例如129,用0.13计算。1399,用0.140计算。2.估算数学素养与能力(含估算能力)的强弱,直接影响到人们的生活节奏和工作、学习、科研效率。已经引起世界有关专家、学者的重视,是个亟待研究的课题。美国数学督导委员会,提出的12种面向全体学生的基本数学能力中,第6
8、种能力即估算:“学生应会通过心算或使用各种估算技巧快速进行近似计算。当解题或购物中需要计算时,估算可以用于考查合理性。检验预测或作出决定”(1)最高位估算只计算式中几个运算数字的最高位的结果,估算整个算式的值大概在什么范围。例1 113750443169最高位之和1533,结果在3000左右。如果因为忽视小数点而算成560,依据“一个不等于零的数乘以真分数,积必小于被乘数”估算,错误立即暴露。例3 51.91.51整体思考。因为 51.950,而501.51501.575,又51.950,1.511.5,所以51.91.5175。另外919,所以原式结果大致是75多一点,三位小数的末位数字是9
9、。例4 327979把3279和79,看作3200和80。准确商接近40,若相差较大,则是错的。(2)最低位估算例如,6403232157832813,原式和的末位必是3。(3)规律估算和大于每一个加数;两个真分数(或纯小数)的和小于2;一个真分数与一个带分数(或一个纯小数与一个带小数)的和大于这个带分数(或带小数),且小于这个带分数(或带小数)的整数部分与2的和;两个带分数(或带小数)的和总是大于两个带分数(或带小数)整数部分的和,且小于这两个整数部分的和加上2;奇数奇数偶数,偶数偶数偶数,奇数偶数奇数;差总是小于被减数;整数与带分数(或带小数)的差小于整数与带分数(或带小数)的整数部分的差
10、;带分数(或带小数),与整数的差大于带分数(或带小数)的整数部分与整数的差。 带分数(或带小数)与真分数(或纯小数)的差小于这个带分数(或带小数),且大于带分数(或带小数)减去1的差;带分数与带分数(或带小数与带小数)的差小于被减数与减数的整数部分的差,且大于这个差减去1;如果两个因数都小于1,则积小于任意一个因数;若两个因数都大于1,则积大于任意一个因数;带分数与带分数(或带小数与带小数)的积大于两个因数的整数部分的积,且小于这两个整数部分分别加1后相乘的积; 例如,AABB。奇数偶数偶数,偶数偶数偶数;若除数1,则商被除数;若除数1,则商被除数;若被除数除数,则商1;若被除数除数,则商1。
11、(4)位数估算整数减去小数,差的小数位数等于减数的小数位数;例如,3200.68,差为两位小数。最高位的乘积满十的两个整数相乘的积的位数,等于这两个数的位数和;例如,4517103最高位的积4728,满10,结果是347(位数)。在整除的情况下,被除数的前几位不够除,商的位数等于被除数的位数减去除数的位数;例如,2714不够27除,商是422(位数)。被除数的前几位够除,商的位数等于被除数的位数与除数位数的差加上1。例如,30226238302够238除,商是5313(位数)。(5)取整估算把接近整数或整十、整百、的数,看作整数,或整十、整百的数估算。如1.980.9721,和定小于3。128
12、.51010,积接近100。3.并项式应用交换律、结合律,把能凑整的数先并起来或去括号。例1 3.3412.966.6612.96(3.346.66)12.961022.96330例3 15.74(8.523.74)15.743.748.52128.523.48例4 1600(4007)160040074728数学网继【小学数学趣题巧算百题百讲百练】系列后又最新推出【小学数学解题思路大全】系列!本系列包括式题的巧解妙算、巧想妙算文字题 、巧想妙算填充、判断、选择题、 巧想妙算数的基本知识题、巧解整除问题 、巧想妙算应用题、巧想妙算初步几何知识题等几部分,几乎囊括了所有类型的例题及解题思路。 数
13、学网将会为广大数学爱好者、小学生和家长提供更多的资源。 欢迎大家提供意见和建议,积极参与,共同进步! 4.提取式根据乘法分配律,可逆联想。(3.256.75)0.4100.44 5.合乘式 87.5101875 8716.扩 缩 式例1 1.6160.4360.4(6436)0.410040例2 1645 7.分 解 式例如,1472427614324427642(2476)4210042008.约 分 式37242例2 169472813 =1988例7 1988 891989被除数与除数,分别除式 10.拆 积 式例如,321.2525 81.25(425)10100100011.换 和
14、式例1 0.12578(0.1250.0007)810.00561.0056例4 8.375.68(8.370.32)(5.680.32)8.6962.69 12.换 差 式13.换 乘 式例1 123234345456567678(123678)380132403例2(6.726.726.726.72)256.72(425)672例3 45000812545000(8125)45000100045例4 9.7283.2259.728(0.8425)9.728800.972880.1216例5 3333333333111119999911111(1)11111综合应用,例如100071007(
15、11.751.254.150.85)125.25(转)(11.751.25)(4.150.85)125.25(合)8125.258(1250.25)(拆)812580.25100214.换 除 式例如,5600(257)5600725800253215.直 接 除17.以乘代加例1 7452369327如果两个分数的分子相同,且等于分母之和(或差),那么这两个分数的和(或差)等于它们的积。18.以乘代减知,两个分数的分子都是1,分母是连续自然数,其差等于其积。可见,各分数的分子都是1。第一个减数的分母等于被减数的分母加1。第二个减数的分母等于被减数的分母与第一个减数的分母的积加1,第n个减数的
16、分母等于被减数的分母与第一、二、第n-1个减数的分母的连乘积加上1。(n为不小于2的自然数)其差等于其积19.以加代乘一个整数与一个整数部分和分子都是1,分母比整数(另个乘数)小120.以除代乘例如,25(1004)421.以减代除19866621324351015(35101170)1023422.以乘代除例如,2.746242723.以除代除观察其特点,24.并数凑整例如,372499372500187156.712.856.7130.243.925.拆数凑整例如,47630247630027789.423.19.4230.16.3226.加分数凑整应用“被减数、减数同时增加或减少相同的数
17、,其差不变”的性质,使原来减去一个带分数或带小数,变成减去整数。例3 8.37-5.68=(8.37+0.32)-(5.68+0.32)=8.69-6=2.6930.凑公因数例如,199227.5198272.5199227.5(1992-10)72.5199227.5199272.5-1072.51992(27.572.5)-725=-725=或原式=(198210)27.5198272.531.和差积法32.直接写得数观察整数和分数部分,显然原式=3。33.变数为式34.分解再组合例如,(12399)(4812396)(12399)4(1+2+399)5(12+399)35.先分解再通分有
18、的学生通分时用短除法,找了许多数试除都不行,而断定57和76为互质数。判断两个数是否互质,不必用2、3、5、逐个试除。把其中一个分解质因数,看另一个数能否被这里的某个质因数整除即可。57319,如果57和76有公有的质因数,只可能是3或19。用3、19试除,57,761934228。26213,65和91是13的倍数。最小公分母为13257910。37.巧用分解质因数教材中讲分解质因数,主要是为了求几个数的最大公约数和最小公倍数,给通分和约分打基础。其实,分解质因数在解题中很有用处。提供新解法,启迪创造思维。例1 18475原式2246355=463(25)2=138100=13800。38.
19、“1、1”法一个整数减去一个带分数,可用这个整数减去比减数的整数部分多1的数,再从1中减去分数部分。为便于记忆,称“1、1”法。39.“1,9,910”法一个整数减去一个小数(末位不为0),可先减去比小数高位多1的数,再从9中减去其它位数,最后从10中减去末位数。40.改变运算顺序例1 6507465(65065)741074740例2 1769849176(9849)1762352例3 713524例4 102990.1259981029919999(l00)990099999941.用 数 据熟记一些特殊数据,可使计算简捷、迅速。例1 由373111知 376111222237153735
20、555 例3 1000以内(不包括整十、整百)只含因数2或5的2、4、8、16、32、64、128、256、512;5、25、125、625。这些数作分母的分数才能化成有限小数,不需试除。例4 特殊分数化小数分母是5、20、25、50的最简分数,在化为小数时,把分子相应地扩大2、5、4、2倍,再缩小10、100倍。分母是8的最简分数,分子是1、3,小数的第一位也是1、3。分母是9的最简分数,循环节的数字和分子的数字相同。例5 1913.143.14 63.1418.8423.146.28 73.1421.9833.149.42 83.1425.1243.1412.56 93.1428.2653
21、.1415.7熟记这些数值,可口算。3.1413=10+3=40.823.1489=90-=282.6-3.14=279.461.58变为整数,三位数前面补0改为四位数,这样不会把数位搞错,将结果左端的0去掉,点上小数点得4.9612。也可从高位算起。42.想特殊性仔细审题,知第二个括号里的结果为0,此题得0。所以可直接得0。例3(1.9-1.90.9)(3.82.8)除数为1,则商就是被除数。43.想 变 式44.用 规 律例1 682702两个连续奇(偶)数的平方和,等于这两个数之积的2倍加4的和。原式687024952049524。例2 5225125251103两个连续自然数的平方差,
22、等于这两个数的和。例3 181920任意三个连续自然数,最小数与中间数的乘积加上最大数的和,等于最大数与中间数的乘积减去最小数。原式201918362。例4 16171518四个连续自然数,中间两个的积比首尾两个的积多2。原式2。证明:设任意四个连续自然数分别为a1、a、a1、a2,则a(a1)(a1)(a2)a2+a-a2-a22。例5 一个从第一位开始有规律循环的多位数(包括整数部分是0的纯循环小数),乘以一个与其循环节位数相同的数,其规律适用于一些题的简算。ABABCD(AB100AB)CDAB100CDABCD(CD100CD)ABCDCDAB如:1255161678125578781
23、6(1258)(52)787845.基础题法在基础题上深化。例如,观察(1)的解题过程,逆用各步的结构特点,46.巧 归 纳例如,121009911100的和为5050,再加一倍为10100,减去多加的100为10000。但速度太慢。有相同的行数和列数,用点或圈列成正方形的数,叫作正方形数。由图知1232+132,1234+54+32152。不难发现,和为最大加数的平方。显然,562930296530242-4900164880。第一章数和数的运算一概念(一)整数1整数的意义自然数和0都是整数。2自然数我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用0表示。0也是
24、自然数。3计数单位一(个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除整数a除以整数b(b0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的
25、约数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3,没有最大的倍数。个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被
26、4整除,50、325、500、1675都能被25整除。一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1和它本身还有别的
27、约数,这样的数叫做合数,例如4、6、8、9、12都是合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5叫做15的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公约数,6是它们的最大公
28、约数。公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如果两个数是互质数,它们的最大公约数就是1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、183的倍数有3、6、9、12、15、18其中6、12、18是2、3的公倍数,6是
29、它们的最小公倍数。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1小数的意义把整数1平均分成10份、100份、1000份得到的十分之几、百分之几、千分之几可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单
30、位“十分之一”和整数部分的最低单位“一”之间的进率也是10。2小数的分类纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.333.无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.5550
31、.033312.一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99的循环节是“9”,0.5454的循环节是“54”。纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.1110.5656混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.12220.03333写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。例如:3.777简写作0.简写作。(三)分数1分数的意义把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
32、在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。2分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四)百分数1表示一个数是另一个
33、数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用%来表示。百分号是表示百分数的符号。二方法(一)数的读法和写法1.整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。2.整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。3.小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点”,小数部分从左向右顺次读出每一位数位上的数字。4.小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小数部分顺次
34、写出每一个数位上的数字。5.分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。6.分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。7.百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。8.百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。(二)数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是
35、原数的准确数。例如把改写成以万做单位的数是万;改写成以亿做单位的数12.543亿。2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:省略亿后面的尾数是13亿。3.四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略万后面的尾数约是35万。省略亿后面的尾数约是47亿。4.大小比较1.比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。2.比较小
36、数的大小:先看它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大3.比较分数的大小:分母相同的分数,分子大的分数比较大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比较两个数的大小。(三)数的互化1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2.分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。3.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成
37、有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。4.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5.百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。7.百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。(四)数的整除1.把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。2.求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公
38、约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。3.求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。4.成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质;当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。(五)约分和通分约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。
39、三性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。(三)小数点位置的移动引起小数大小的变化1.小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍2.小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍3.小数点向左移或者向右移位数不够时,要用“0补足位。(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者
40、除以相同的数(零除外),分数的大小不变。(五)分数与除法的关系1.被除数除数=被除数/除数2.因为零不能作除数,所以分数的分母不能为零。3.被除数相当于分子,除数相当于分母。四运算的意义(一)整数四则运算1整数加法:把两个数合并成一个数的运算叫做加法。在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。加数+加数=和一个加数=和另一个加数2整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。加法和减法互为逆运算。3整数乘法:求几个相同加数的和的简便运算叫做
41、乘法。在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。在乘法里,0和任何数相乘都得0.1和任何数相乘都的任何数。一个因数一个因数=积一个因数=积另一个因数4整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。乘法和除法互为逆运算。在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。被除数除数=商除数=被除数商被除数=商除数(二)小数四则运算1.小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2.小数减法:小数减法的意
42、义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.3.小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几是多少。4.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。5.乘方:求几个相同因数的积的运算叫做乘方。例如33=32(三)分数四则运算1.分数加法:分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。2.分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。3.
43、分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。4.乘积是1的两个数叫做互为倒数。5.分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。(四)运算定律1.加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。2.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c)。3.乘法交换律:两个数相乘,交换因数的位置它们的积不变,即ab=ba。4.乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两
44、个数相乘,再和第一个数相乘,它们的积不变,即(ab)c=a(bc)。5.乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)c=ac+bc。6.减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。(五)运算法则1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。2.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。3.整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因
45、数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。4.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。5.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。6.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。7.除数是小数的除法计
46、算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。8.同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。9.异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。10.带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。11.分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。12.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。(六)运算顺序1.小数四则
47、运算的运算顺序和整数四则运算顺序相同。2.分数四则运算的运算顺序和整数四则运算顺序相同。3.没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。4.有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。5.第一级运算:加法和减法叫做第一级运算。6.第二级运算:乘法和除法叫做第二级运算。五应用(一)整数和小数的应用1简单应用题(1)简单应用题:只含有一种基本数量关系,或用一步运算解答的应用题,通常叫做简单应用题。(2)解题步骤:a审题理解题意:了解应用题的内容,知道应用题的条件和问题。读题时,不丢字不添字边读边思考,弄明白题中每句话的意思。也可以复述
48、条件和问题,帮助理解题意。b选择算法和列式计算:这是解答应用题的中心工作。从题目中告诉什么,要求什么着手,逐步根据所给的条件和问题,联系四则运算的含义,分析数量关系,确定算法,进行解答并标明正确的单位名称。C检验:就是根据应用题的条件和问题进行检查看所列算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。2复合应用题(1)有两个或两个以上的基本数量关系组成的,用两步或两步以上运算解答的应用题,通常叫做复合应用题。(2)含有三个已知条件的两步计算的应用题。求比两个数的和多(少)几个数的应用题。比较两数差与倍数关系的应用题。(3)含有两个已知条件的两步计算的应用题。已知两数相差多少(或倍数关系)与其中一个数,求两个数的和(或差)。已知两数之
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学习课件制作的心得体会
- 婚礼证婚人致辞
- 好人好事先进事迹材料
- 老年期睡眠障碍的临床护理
- 2025至2031年中国牙髓失活剂行业投资前景及策略咨询研究报告
- 生活部工作与个人兴趣的融合计划
- 客户需求变化的响应策略计划
- 2025-2030年3G产业公司技术改造及扩产项目可行性研究报告
- 教学活动的评估与改进机制计划
- 构建企业文化与员工关系的重要性计划
- GB/T 27060-2025合格评定良好实践指南
- 劳动教育智慧树知到期末考试答案章节答案2024年华中师范大学
- (完整版)年产30万吨甲醇工艺设计毕业设计
- 仁爱版英语八年级下册 Unit6 Topic3 SectionC-教案
- 西门子SIMATIC NET 以太网 OPC组态详细配置
- Q∕SY 01039.2-2020 油气集输管道和厂站完整性管理规范 第2部分:管道数据管理
- 社区卫生服务中心(站)财务、药品、固定资产、档案、信息管理制度
- 大象版小学《科学》实验目录
- 工厂无尘室培训教材ppt课件
- 美国各州的缩写及主要城市
- 管道开挖技术交底
评论
0/150
提交评论