湖南省长沙市重点达标名校2022年中考试题猜想数学试卷含解析_第1页
湖南省长沙市重点达标名校2022年中考试题猜想数学试卷含解析_第2页
湖南省长沙市重点达标名校2022年中考试题猜想数学试卷含解析_第3页
湖南省长沙市重点达标名校2022年中考试题猜想数学试卷含解析_第4页
湖南省长沙市重点达标名校2022年中考试题猜想数学试卷含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1计算(5)(3)的结果等于()A8 B8 C2 D22运用图形变化的方法研究下列问题:如图,

2、AB是O的直径,CD,EF是O的弦,且ABCDEF,AB=10,CD=6,EF=8.则图中阴影部分的面积是( )ABCD3关于x的方程(a1)x|a|+13x+20是一元二次方程,则( )Aa1Ba1Ca1Da14下列等式正确的是()Ax3x2=xBa3a3=aCD(7)4(7)2=725估计的值在 ( )A4和5之间B5和6之间C6和7之间D7和8之间6世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司将0.056用科学记数法表示为( )A5.6101B5.6102C5.6103D0.561017点A(1,y1),B(2,y2)在反比例函数y=2x的图象上,则y1,y2的大小关

3、系是( )Ay1y2By1=y2Cy1y2D不能确定8如图,ab,点B在直线b上,且ABBC,1=40,那么2的度数( )A40B50C60D909不等式组的解集在数轴上可表示为()ABCD10的相反数是()AB-CD-11如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A1处B2处C3处D4处12若关于x的方程=3的解为正数,则m的取值范围是( )AmBm且mCmDm且m二、填空题:(本大题共6个小题,每小题4分,共24分)13关于的方程有增根,则_.14分解因式:4m216n2_15如图,在矩形ABCD中,对角线AC与

4、BD相交于点O,过点A作AEBD,垂足为点E,若EAC=2CAD,则BAE=_度 1627的立方根为 17百子回归图是由 1,2,3,100 无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四 位“19 99 12 20”标示澳门回归日期,最后一行中间两 位“23 50”标示澳门面积,同时它也是十阶幻方, 其每行 10 个数之和、每列 10 个数之和、每条对角线10 个数之和均相等,则这个和为_百 子 回 归18在ABC中,AB=AC,BDAC于D,BE平分ABD交AC于E,sinA=,BC=,则 AE=_.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演

5、算步骤19(6分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标 20(6分)如图,在平面直角坐标系中,以直线为对称轴的抛物线与直线交于,两点,与轴交于,直线与轴交于点.(1)求抛物线的函数表达式;(2)设直线与抛物线的对称轴的交点为,是抛物线上位于对称轴右侧的一点,若,且与的面积相等,求

6、点的坐标;(3)若在轴上有且只有一点,使,求的值.21(6分)已知抛物线经过点,把抛物线与线段围成的封闭图形记作 (1)求此抛物线的解析式;(2)点为图形中的抛物线上一点,且点的横坐标为,过点作轴,交线段于点当为等腰直角三角形时,求的值;(3)点是直线上一点,且点的横坐标为,以线段为边作正方形,且使正方形与图形在直线的同侧,当,两点中只有一个点在图形的内部时,请直接写出的取值范围22(8分)已知关于x,y的二元一次方程组的解为,求a、b的值23(8分)如图,已知抛物线经过点A(1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过

7、点P做x轴的垂线l交抛物线于点Q,交直线BD于点M(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由24(10分)已知a2+2a=9,求的值25(10分)抛物线y=x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P(1)求该抛物线的解析式和顶点坐标;(2)过点P作x轴的平行线l,若点Q是直线上的动点,连接QB

8、若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可)26(12分)如图,有四张背面相同的卡片A、B、C、D,卡片的正面分别印有正三角形、平行四边形、圆、正五边形(这些卡片除图案不同外,其余均相同)把这四张卡片背面向上洗匀后,进行下列操作:若任意抽取其中一张卡片,抽到的卡片既是中心对称图形又是轴对称图形的概率是 ;若任意抽出一张不放回,然后再从余下的抽出一张请用树状图或列表表示摸出的两张卡片所有可能的结果,求抽出的两张卡片的图形是中心对称图形的概率27(12分)已知:如图,在平面直角坐标系

9、xOy中,直线AB分别与x轴、y轴交于点B,A,与反比例函数的图象分别交于点C,D,CEx轴于点E,tanABO=,OB=4,OE=1(1)求该反比例函数的解析式;(1)求三角形CDE的面积参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】分析:减去一个数,等于加上这个数的相反数 依此计算即可求解详解:(-5)-(-3)=-1故选:C点睛:考查了有理数的减法,方法指引:在进行减法运算时,首先弄清减数的符号; 将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数)2、A

10、【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S扇形OEF,然后根据三角形的面积公式证明SOCD=SACD,SOEF=SAEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解【详解】作直径CG,连接OD、OE、OF、DGCG是圆的直径,CDG=90,则DG=8,又EF=8,DG=EF,S扇形ODG=S扇形OEF,ABCDEF,SOCD=SACD,SOEF=SAEF,S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=52=,故选A【点睛】本题考查扇形面积的计算,圆周角

11、定理本题中找出两个阴影部分面积之间的联系是解题的关键3、C【解析】根据一元一次方程的定义即可求出答案【详解】由题意可知:,解得a1故选C【点睛】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型4、C【解析】直接利用同底数幂的乘除运算法则以及有理数的乘方运算法则分别计算得出答案【详解】解:A、x3-x2,无法计算,故此选项错误;B、a3a3=1,故此选项错误;C、(-2)2(-2)3=-,正确;D、(-7)4(-7)2=72,故此选项错误;故选C【点睛】此题主要考查了同底数幂的乘除运算以及有理数的乘方运算,正确掌握相关运算法则是解题关键5、C【解析】根据 ,可

12、以估算出位于哪两个整数之间,从而可以解答本题【详解】解: 即故选:C【点睛】本题考查估算无理数的大小,解题的关键是明确估算无理数大小的方法6、B【解析】0.056用科学记数法表示为:0.056=,故选B.7、C【解析】试题分析:对于反比例函数y=kx,当k0时,在每一个象限内,y随x的增大而减小,根据题意可得:12,则y1y2考点:反比例函数的性质8、B【解析】分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.详解:ABBC,ABC=90,点B在直线b上,1+ABC+3=180,3=180-1-90=50,ab,2=3=50.故选B.点睛:熟悉“平行线的性质、平角的定义和垂直

13、的定义”是正确解答本题的关键.9、A【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解: 不等式得:x1,解不等式得:x2,不等式组的解集为1x2,在数轴上表示为:,故选A.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.10、B【解析】+()=0,的相反数是故选B11、D【解析】到三条相互交叉的公路距离相等的地点应是三条角平分线的交点把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)

14、三个外角两两平分线的交点,共三处如图所示,故选D【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解12、B【解析】解:去分母得:x+m3m=3x9,整理得:2x=2m+9,解得:x=,已知关于x的方程=3的解为正数,所以2m+90,解得m,当x=3时,x=3,解得:m=,所以m的取值范围是:m且m故答案选B二、填空题:(本大题共6个小题,每小题4分,共24分)13、-1【解析】根据分式方程10有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入

15、x=1可求得a=-1.故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.14、4(m+2n)(m2n)【解析】原式提取4后,利用平方差公式分解即可【详解】解:原式=4( )故答案为【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法15、22.5【解析】四边形ABCD是矩形,AC=BD,OA=OC,OB=OD,OA=OBOC,OAD=ODA,OAB=OBA,AOE=OAD+ODA=2OAD,EAC=2CAD,EAO=AOE,AEBD,AEO=90,AOE

16、=45,OAB=OBA=67.5,即BAE=OABOAE=22.5考点:矩形的性质;等腰三角形的性质16、1【解析】找到立方等于27的数即可解:11=27,27的立方根是1,故答案为1考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算17、505【解析】根据已知得:百子回归图是由1,2,3,100无重复排列而成,先计算总和;又因为一共有10行,且每行10个数之和均相等,所以每行10个数之和=总和10,代入求解即可【详解】1100的总和为: =5050,一共有10行,且每行10个数之和均相等,所以每行10个数之和为:n=505010=505,故答案为505.【点睛】本题是数字变化类的规

17、律题,是常考题型;一般思路为:按所描述的规律从1开始计算,从计算的过程中慢慢发现规律,总结出与每一次计算都符合的规律,就是最后的答案18、5【解析】BDAC于D,ADB=90,sinA=.设BD=,则AB=AC=,在RtABD中,由勾股定理可得:AD=,CD=AC-AD=,在RtBDC中,BD2+CD2=BC2,解得(不合题意,舍去),AB=10,AD=8,BD=6,BE平分ABD,AE=5.点睛:本题有两个解题关键点:(1)利用sinA=,设BD=,结合其它条件表达出CD,把条件集中到BDC中,结合BC=由勾股定理解出,从而可求出相关线段的长;(2)要熟悉“三角形角平分线分线段成比例定理:三

18、角形的内角平分线分对边所得线段与这个角的两边对应成比例”.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).【解析】分析:(1)根据对称轴方程求得b=4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可; (2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到: (1)联结CE分类讨论:(i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F

19、1,设点F1(a,0)在RtOCF1中,利用勾股定理求得a的值; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答详解:(1)顶点C在直线x=2上,b=4a 将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=4,抛物线的解析式为y=x24x+1 (2)过点C作CMx轴,CNy轴,垂足分别为M、N y=x24x+1(x2)21,C(2,1) CM=MA=1,MAC=45,ODA=45,OD=OA=1 抛物线y=x24x+1与y轴交于点B,B(0,1),BD=2 抛物线在平移的过程中,线段BC所扫过的面积为平行

20、四边形BCDE的面积, (1)联结CE 四边形BCDE是平行四边形,点O是对角线CE与BD的交点,即 (i)当CE为矩形的一边时,过点C作CF1CE,交x轴于点F1,设点F1(a,0)在RtOCF1中,即 a2=(a2)2+5,解得: ,点 同理,得点; (ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、 综上所述:满足条件的点有), 点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键20、(1).;(2)点坐标为;.(3).【解析】分析:(1)根据已知列出方程组求解即

21、可;(2)作AMx轴,BNx轴,垂足分别为M,N,求出直线l的解析式,再分两种情况分别求出G点坐标即可;(3)根据题意分析得出以AB为直径的圆与x轴只有一个交点,且P为切点,P为MN的中点,运用三角形相似建立等量关系列出方程求解即可详解:(1)由题可得:解得,.二次函数解析式为:.(2)作轴,轴,垂足分别为,则.,解得,.同理,., (在下方),即,.,.在上方时,直线与关于对称.,.,.综上所述,点坐标为;.(3)由题意可得:.,即.,.设的中点为,点有且只有一个,以为直径的圆与轴只有一个交点,且为切点.轴,为的中点,.,即,.,.点睛:此题主要考查二次函数的综合问题,会灵活根据题意求抛物线

22、解析式,会分析题中的基本关系列方程解决问题,会分类讨论各种情况是解题的关键21、(1);(2)-2或-1;(3)-1n1或1n3.【解析】(1)把点,代入抛物线得关于a,b的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得: 解得: 此抛物线的解析式 ;(2)设直线AB的解析式为y=kx+b,依题意得: 解得: 直线AB的解析式为y=-x.点P的横坐标为m,且在抛物线上,点P的坐标为(m, )轴,且点Q有线段AB上,点Q的坐标为(m,-m) 当PQ=AP时,如图,APQ

23、=90,轴,解得,m=-2或m=1(舍去) 当AQ=AP时,如图,过点A作ACPQ于C,为等腰直角三角形,2AC=PQ即m=1(舍去)或m=-1.综上所述,当为等腰直角三角形时,求的值是-2惑-1.;(3)如图,当n1时,依题意可知C,D的横坐标相同,CE=2(1-n)点E的坐标为(n,n-2)当点E恰好在抛物线上时,解得,n=-1.此时n的取值范围-1n1时,依题可知点E的坐标为(2-n,-n)当点E在抛物线上时, 解得,n=3或n=1.n1.n=3.此时n的取值范围1n3.综上所述,n的取值范围为-1n1或1n3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和

24、二次函数的性质是解题的关键.22、或【解析】把代入二元一次方程组得到关于a,b的方程组,经过整理,得到关于b的一元二次方程,解之即可得到b的值,把b的值代入一个关于a,b的二元一次方程,求出a的值,即可得到答案【详解】把代入二元一次方程组得:,由得:a=1+b,把a=1+b代入,整理得:b2+b-2=0,解得:b= -2或b=1,把b= -2代入得:a+2=1,解得:a= -1,把b=1代入得:a-1=1,解得:a=2,即或【点睛】本题考查了二元一次方程组的解,正确掌握代入法是解题的关键23、(1)y=x2+x+2;(2)m=1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2

25、)或(1,0)时,以点B、Q、M为顶点的三角形与BOD相似【解析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=x-2,则Q(m,-m2+m+2)、M(m,m-2),由QMDF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知ODB=QMB,故分DOB=MBQ=90,利用DOBMBQ得,再证MBQBPQ得,即,解之即可得此时m的值;BQM=90,此时点Q与点A重合,BODBQM,易得点Q坐标详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=

26、-,则抛物线解析式为y=-(x+1)(x-4)=-x2+x+2;(2)由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:,解得:,直线BD解析式为y=x-2,QMx轴,P(m,0),Q(m,-m2+m+2)、M(m,m-2),则QM=-m2+m+2-(m-2)=-m2+m+4,F(0,)、D(0,-2),DF=,QMDF,当-m2+m+4=时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:QMDF,ODB=QMB,分以下两种情况:当DOB=MBQ=90时,DOBMBQ,则,

27、MBQ=90,MBP+PBQ=90,MPB=BPQ=90,MBP+BMP=90,BMP=PBQ,MBQBPQ,即,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,m=3,点Q的坐标为(3,2);当BQM=90时,此时点Q与点A重合,BODBQM,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与BOD相似点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用【详解】请在此输入详解!24、,【解析】试题分

28、析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值试题解析:= = =, a2+2a=9,(a+1)2=1原式=25、(1)y=(x)2+;(,);(2)(,)或(,);(0,);【解析】1)把0(0,0),A(4,4v3)的坐标代入y=x2+bx+c,转化为解方程组即可.(2)先求出直线OA的解析式,点B坐标,抛物线的对称轴即可解决问题.(3)如图1中,点O关于直线BQ的对称点为点C,当点C恰好在直线l上时,首先证明四边形BOQC是菱形,设Q(m,),根据OQ=OB=5,可得方程,解方程即可解决问题.如图2中,由题意点D在以B为圆心5为半径的OB上运动,当A,D、B共线时,线段AD最小,设OD与BQ交于点H.先求出D、H两点坐标,再求出直线BH的解析式即可解决问题.【详解】(1)把O(0,0),A(4,4)的坐标代入y=x2+bx+c,得,解得,抛物线的解析式为y=x2+5x=(x)2+所以抛物线的顶点坐标为(,);(2)由题意B(5,0),A(4,4),直线OA的解析

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论